SFU Discrete Math Seminar: Yanwen Luo
Topic
Spaces of Geodesic Triangulations of Surfaces
Speakers
Details
In 1962, Tutte proposed a simple method to produce a straight-line embedding of a planar graph in the plane, known as Tutte's spring theorem. This construction provides not only one embedding of a planar graph, but infinite many distinct embeddings of the given graph. This observation leads to a surprisingly simple proof of a classical theorem proved by Bloch, Connelly, and Henderson in 1984 stating that the space of geodesic triangulations of a convex polygon is contractible. In this talk, we will introduce spaces of geodesic triangulations of surfaces, review Tutte's spring theorem, and present this short proof. We will briefly report the recent progress in identifying the homotopy types of spaces of geodesic triangulations of more complicated surfaces.
This is a joint work with Tianqi Wu and Xiaoping Zhu.
Additional Information
Time: 11:30 - 12:20 Pacific
Room: K9509 - SFU