UBC Department Colloquium: Cristian Lenart
Topic
Lie algebra representations, flag manifolds, and combinatorics. An old story with new twists
Speakers
Details
The connections between representations of complex semisimple Lie algebras and the geometry of the corresponding flag manifolds have a long history. Moreover, combinatorics plays an important role in the related computations. My talk is devoted to new aspects of this story. On the Lie algebra side, I consider certain modules for quantum affine algebras. I discuss their relationship with Macdonald polynomials, which generalize the irreducible characters of simple Lie algebras. On the geometric side, I consider the quantum K-theory of flag manifolds, which is a K-theoretic generalization of quantum cohomology. A new combinatorial model, known as the quantum alcove model, is also presented. The talk is based on joint work with S. Naito, D. Sagaki, A. Schilling, and M. Shimozono.