Lethbridge Number Theory and Combinatorics Seminar: Adam Felix
Topic
How close is the order of a mod p to p−1?
Speakers
Details
Let $a \in \mathbb{Z} \setminus \{0,\pm 1\}$, and let $f_{a}(p)$ denote the order of $a$ modulo $p$, where $p \nmid a$ is prime. There are many results that suggest $p - 1$ and $f_{a}(p)$ are close. For example, Artin's conjecture and Hooley's subsequent proof upon the Generalized Riemann Hypothesis. We will examine questions related to the relationship between $p - 1$ and $f_{a}(p)$.
Additional Information
Location: C630 University Hall
Adam Felix, KTH Royal Institute of Technology, Sweden
Web page: http://www.cs.uleth.ca/~nathanng/ntcoseminar/
Adam Felix, KTH Royal Institute of Technology, Sweden
This is a Past Event
Event Type
Scientific, Seminar
Date
June 1, 2015
Time
-
Location