CORE Seminar: Jon Kelner
Topic
Speakers
Details
Flow and cut problems on graphs are among the most fundamental and extensively studied problems in Operations Research and Optimization, playing a foundational role in both the theory and practice of algorithm design. While the classical algorithms for these problems were largely based on combinatorial approaches, the past several years have witnessed the emergence of a powerful collection of new techniques based on geometry, spectral graph theory, computational linear algebra, randomization, and iterative methods from continuous optimization. These numerical techniques have allowed researchers to provide better provable algorithms for a wide range of graph problems, in some cases breaking algorithmic barriers that had stood for several decades.
The relationship between graph theory and numerical analysis has proven fruitful in the other direction as well. In addition to providing numerical techniques for graph algorithms, it has given rise to new combinatorial techniques for computational linear algebra. In particular, it has led to fast algorithms for Laplacian linear systems, which have broad applications in numerical scientific computing, machine learning, operations research, computer vision, and network analysis, among others.
In this talk, I discuss some of the recurring themes that arise in this confluence of fields. I will apply these to sketch algorithms that run in close to linear time for two basic algorithmic problems: solving Laplacian linear systems and finding approximately maximum flows on undirected graphs.
The talk will be based on joint work with Yin Tat Lee, Aaron Sidford, Lorenzo Orecchia, and Zeyuan Zhu.
Additional Information
Jonathan Kelner, MIT