Algorithmic Theory of Networks Seminar: Thomas Sauerwald
Topic
Balls into Bins via Local Search
Speakers
Details
We study a natural process for allocating m balls into n bins that are organized as the vertices of an undirected graph G. Balls arrive one at a time. When a ball arrives, it first chooses a vertex u in G uniformly at random. Then the ball performs a local search in G starting from u until it reaches a vertex with local minimum load, where the ball is finally placed on. Then the next ball arrives and this procedure is repeated. For the case m = n, we give an upper bound for the maximum load on graphs with bounded degrees. We also propose the study of the cover time of this process, which is defined as the smallest m so that every bin has at least one ball allocated to it. We establish an upper bound for the cover time on graphs with bounded degrees. Our bounds for the maximum load and the cover time are tight when the graph is transitive or sufficiently homogeneous.
Additional Information
Location: TASC 1, Room 9204 West
Thomas Sauerwald, University of Cambridge
This is a Past Event
Event Type
Scientific, Seminar
Date
December 11, 2014
Time
-
Location