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Foreword by the PIMS Director

The PIMS Industrial Problem Solving Workshops have been held annually since 1997. The 9th IPSW
was held at the University of Calgary from May 15–19, 2005, immediately following the 8th GIMMC
(Graduate Industrial Mathematics Modelling Camp) which was held at the University of Lethbridge.
We are very grateful to the universities for hosting these events.

Approximately 55 participants worked intensely on five problems posed by industrial companies
from across North America. All these problems highlight the need for correct mathematical modelling,
and the industrial payback from a good solution. We are grateful to Donald Mackenzie (University
of Calgary), Gerald K. Cole (Biomechanigg Research Inc.), Pierre Lemire & Rob Pinnegar (Calgary
Scientific Inc.), Brad Bondy (Genus Capital Management), and Brian Russell (Hampson Russell Soft-
ware) for providing the problems and guiding the participants.

Special thanks go to Sean Bohun from Penn State University who carefully edited these proceed-
ings, and Elena Braverman and Gary Margrave from the University of Calgary for the difficult task of
providing the industrial contacts and organizing the meeting.

Dr. Ivar Ekeland, Director
Pacific Institute for the Mathematical Sciences
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Preface

The University of Calgary was the site of the ninth annual PIMS Industrial Problem Solving Workshop
(IPSW). Hosted from May 15 through May 19, 2005, the workshop was co-sponsored by PIMS, Al-
berta Innovation and Science, iCORE and the University of Calgary. This workshop saw the bringing
together of participants from across North America.

Many first time participants of these workshops are surprised by the intensity of the work. Based
on the Oxford Study Group Model, the morning of the first day consists of the initial problem pre-
sentations and the beginning of focused discussions amongst the self-selected groups. Input from the
academic experts was found to be especially vital during the initial phases the work, especially in pro-
viding guidance to the new participants and graduate students. Work continued throughout the next
few days culminating in a summary presentation of results at the end of the fifth day. These summary
presentations form the basis of these proceedings. Problems were chosen from a diverse set of topics
which challenged the participants and utilized many of their individual talents. I would like to take
this opportunity to thank the individual authors for their dedication and prompt response so that these
proceedings were possible. These individuals were (in order of their submission):

• Tony Ware: Adaptive Statistical Evolution Tools for Equity Ranking Models

• Greg Lewis: Force-Control for the Automated Footwear Testing System

• Michael Lamoureux: Seismic Image Analysis Using Local Spectra

• Yaling Yin: Seismic Prediction of Reservoir Parameters

• C. Sean Bohun: Mathematical Model of the Mechanics and Dynamics of Tails in Dinosaurs

To ensure the smooth and efficient operation of the workshop, many individuals are needed behind
the scenes. I would like to thank the organizing committee consisting of Elena Braverman and Gary
Margrave both from the University of Calgary. Without their dedication and resourcefulness, this event
would not have been possible.

Two other essential ingredients for the success of the workshop were the industrial representatives
and the industrial experts. While the representatives are certainly an asset and provide a basis for each
of the problems, it is the academic experts that are responsible for each of the groups moving along
productive lines. For this year the academic experts were:

• C. Sean Bohun, Pennsylvania State University

• Len Bos, University of Calgary

• Elena Braverman, University of Calgary

• Gemai Chen, University of Calgary

• Lou Fishman, MDF International, University of Calgary

• Michael Lamoureux, University of Calgary

• Greg Lewis, University of Ontario Institute of Technology
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• Qiao Sun, University of Calgary

• Tony Ware, University of Calgary

• Rex Westbrook, University of Calgary

A special thanks goes to the industrial contributors and their representatives who include:

• Donald M. Henderson, University of Calgary in collaboration with the Royal Tryell Museum of
Palaeontology

• Gerald K. Cole, University of Calgary in collaboration with Biomechanigg Research Inc.

• Rob Pinnegar, Calgary Scientific Inc.

• Pierre Lemire, Calgary Scientific Inc.

• Brad Bondy, Genus Capital Management

• Brian Russell, Hampson-Russell Software

At the end of this monograph there is a listing of the workshop participants and the various institu-
tions where they can be found and I would like to take this opportunity to apologize for any mistakes
or omissions therein.

In closing, I would like to thank Heather Jenkins at the PIMS central office for her dedication,
efficiency, and patience in dealing with the production of these proceedings.

C. Sean Bohun, Editor
Department of Mathematics
Pennsylvania State University
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Chapter 1

Mathematical Model of the Mechanics and
Dynamics of the Tails in Dinosaurs

Problem presented by: Donald Mackenzie (University of Calgary)

Mentors: C. Sean Bohun (Pennsylvania State University), Donald Henderson (University of Calgary),
Bernard Monthubert (Institut de Mathématiques de Toulouse), Rex Westbrook (University of Calgary)

Student Participants: Robin Clysdale (University of Calgary), Diana David-Rus (Rutgers Univer-
sity), Matthew Emmett (University of Calgary), Chad Hogan (University of Calgary), Mark Hughes
(University of Calgary), Enkeleida Lushi (Simon Fraser University), Peter Smith (Memorial University
of Newfoundland), Naveen Vaidya (York University)

Report prepared by: C. Sean Bohun (csb15@psu.edu)

1.1 Introduction

Unlike mammals which have very reduced tails, the tails of dinosaurs represented a substantial fraction
of their body lengths and masses. The left and right sides of the tail base in all dinosaurs acted as
the anchor points for large, powerful muscles that attached on the rearward side of the hind limbs
(Figure 1.1). These muscles pulled on the legs, causing them to rotate backwards and under the body,
with the result that the animals were propelled forward. As well as pulling on the legs, these muscles
would have exerted a reciprocal pull on the tail. During locomotion the left and right hind limbs would
be alternately pulled, and be 180◦ out of phase with each other. These alternating tugs would have set
up oscillations in the tail. It would seem that some sort of synchrony would have to arise between the
rate at which the legs were swung back and forth and the natural frequencies of oscillations of the tail
to allow efficient, stable walking and running. The extreme sizes of some dinosaurs—up to 30 tonnes
in some cases—and the great range of body sizes—from a few hundred grams to many tonnes—gives
dinosaurs the potential to be insightful models for the study of locomotory dynamics in terrestrial
animals.

There are two possible avenues to investigate the effects of tails on locomotion:

1. Focus on just the ∼ 14m tail of Diplodocus carnegii, a 24m sauropod where the tail represents
approximately 26% of the total body mass detailed in Figure 1.2.

3



4 CHAPTER 1. DINOSAUR TAILS

Figure 1.1: Anatomical details of the tail base structure in dinosaurs.

Figure 1.2: Diplodocus carnegii is a 24m sauropod with a 14m long tail.

2. Investigate the variation in tail mechanics that occurred during the evolution of theropod dinosaurs—
the two-legged, carnivores. In small, early theropods such as the 30cm long Compsognathus the
tail represents just over half the total body length, and is very slender and flexible. In larger,
later theropods such as a 12m Tyrannosaurus the tail represents just one third of the total body
length, and is proportionally deeper and much stiffer. Figure 1.3 illustrates this variation in tail
structure.

Section 1.2 begins with a survey of physical data for both bipedal and quadrupedal dinosaurs. In
this section the ratio of the tail to leg length is compared across many diverse species and a scaling law
is developed that relates the tail length, leg length and tail radius. A continuous model for the tail is
developed in Section 1.3 and by nondimensionalising a small parameter related to the thinness of the
tail simplifies the resulting coupled nonlinear equations. It is shown that the resulting set of equations
contain aspects of both beam dynamics and wave propagation. In Section 1.4 a discrete version of the
tail is derived with the assumption that the sections of the tail are coupled with a stiff joint that allows

π



1.2. DIMENSIONAL ANALYSIS 5

Figure 1.3: Comparison of the tail structures for Compsognathus and Tyrannosaurus.

rotation but does not allow extension. In this model the stiffness of each joint is characterized by an
effective spring constant ki for the ith joint and results in a discrete version of the Euler-Bernoulli
expression for each of the tail segments. The paper finishes with some preliminary conclusions and
directions for future work.

1.2 Dimensional Analysis

As a first model we suppose that the tail acts like a flexible beam with the periodic driving force of
the rear legs modelled with a pendulum. If the beam has length Ltail and effective radius Rtail then the
deflection of the beam u(x, t) : [0, Ltail] × [0,∞) → R is given by

∂2

∂x2

(

EI(x)
∂2u

∂x2

)

= ρA(x)
∂2u

∂t2

where E is the Young’s modulus, I is the moment of inertia about the neutral axis, ρ is the density,
and A is the cross section of the tail. If we nondimensionise by substituting

x̂ =
x

Ltail
, û =

u

Ltail
, t̂ =

t

Ttail
,

I = R4
tailÎ , A = R2

tailÂ

π



6 CHAPTER 1. DINOSAUR TAILS

we find that
ER2

tailT
2
tail

ρL4
tail

∂2

∂x̂2

(

Î
∂2û

∂x̂2

)

= Â
∂2û

∂t̂2
.

This indicates that the characteristic time to propagate a disturbance the complete length of the tail is

Ttail ∼
( ρ

E

)1/2 L2
tail

Rtail
.

At the same level of approximation assume that the legs of the dinosaur act like a pendulum of
length Lleg so that the characteristic period for the motion of the legs is on the order of

Tleg ∼
(

Lleg

g

)1/2

where g is the acceleration due to gravity. As a result, if the tail plays a significant role in the locomo-
tion with this model then Tleg ∼ Ttail and

L4
tail

LlegR
2
tail

= const. (1.1)

depending only on the composition of the tail. Notice that this expression predicts that for a fixed leg
length, increasing the length of the tail necessarily increases its effective radius in contrast with the
archaeological evidence.

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

log10(Lleg)

lo
g 1

0(
L

ta
il)

Biped:         Ltail = 1.99Lleg
1.14

Quadruped: Ltail = 2.73Lleg
1.18

Figure 1.4: Ltail as a function of Lleg for a sample of bipedal and quadrupedal dinosaurs.

Figure 1.4 compares approximate values of the leg length to the tail length for a selection of bipedal
and quadrupedal dinosaurs. For bipeds, the tail is typically twice the length of the leg whereas in
quadrupeds the tail is, on average, an additional 40% longer. Figure 1.5 illustrates expression (1.1)
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1.3. INEXTENSIBLE ROD EQUATIONS 7

and contrasts it with an optimal expression that minimizes the variation. Clearly the beam/pendulum
model is not reflected in the sample but the variance is drastically reduced with the expressions

Bipeds:
L0.45

tail R
0.39
tail

Lleg
= const. Quadrupeds:

L0.23
tail R

0.69
tail

Lleg
= const. (1.2)

These results imply that for a fixed leg length, if the length of the tail is doubled then the radius of
the tail in a biped is halved, whereas in a quadruped the radius of the tail is reduced to one-eighth of
its original value. So we see that bipeds tend to have much thicker tails than correspondingly sized
quadrupeds.

0 5 10 15 20 25
-1

0

1

2

3

4

5

n

a 
lo

g 1
0(

L
ta

il)
 +

 b
 lo

g 1
0(

R
ta

il)
 -

 lo
g 1

0(
L

le
g) Biped: a = 4, b = -2

Biped: a = 0.45, b = 0.393

Quadruped: a = 4, b = -2

Quadruped: a = 0.233, b = 0.649

Figure 1.5: Scatter plot of the data assumed to satisfy (1.1) and the corresponding plot of the data
when a and b are chosen to minimize the variance.

The question remains to find a mechanism that predicts the archaeological evidence described
in (1.2). In the case of bipeds a similar expression can be recovered by analysing the simple cantilever
depicted in Figure 1.6. Here the tail, rear legs, and forward torso are replaced with rectangular blocks.
The condition that this effective dinosaur does not tip over is L2

leg(Lleg/2) − 2LtailRtail(Ltail/2) = 0 or

L
2/3
tail R

1/3
tail

Lleg
= const.

the point here is that scaling expressions like (1.2) are a result of balance equilibrium rather than
synchronous locomotion. So it seems more likely that the physical dimensions of the tail are chosen
to balance the dinosaur rather than complementing its locomotion dynamics.

1.3 Inextensible Rod Equations

We turn the discussion to the development of an appropriate model for the tail of the dinosaur and we
begin with a derivation of the equations satisfied by an inextensible rod.
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8 CHAPTER 1. DINOSAUR TAILS

Ltail

Lleg

Lleg
2Rtail

Figure 1.6: An effective dinosaur with the major anatomical structures replaced with blocks of a
representative size.

To the left of Figure 1.7 is a segment of length ∆s with orientation φ, internal tensions of F , G in
the x, y directions, a bending momentM and an external force of ~P per unit length. In this case we are
viewing the tail from above so that ~P is essentially zero since the weight of the tail acts perpendicular
to this plane. It is simply left in for completeness. In any case, simple geometry gives the relationships

cos φ = ∆x/∆s, sinφ = ∆y/∆s. (1.3)

If the density and cross sectional area of the segment are ρ and A respectively then the mass of the
segment is ρA∆s and by resolving the linear motion in the x and y directions one obtains

(ρA∆s)xtt = ∆F + P1∆s, (ρA∆s)ytt = ∆G+ P2∆s. (1.4)

The angular motion is given by I0φtt = τ where I0 is the moment of inertia of the cross section
and τ is the net torque acting on the segment. From Figure 1.7, taking torques about the point A, one
finds that τ = ∆M − F∆y +G∆x so that

(ρI∆s)φtt = ∆M − (F∆s) sinφ+ (G∆s) cosφ (1.5)

where we have used the moment of inertia of the cross section defined as

I =

∫∫

A

y2 dA.

This quantity is analogous to the ordinary moment of inertia I0 except that the mass element is replaced
by the area element of the cross section. Note that the torque due to the external force is of a higher
order of smallness.

A final relationship can be obtained by assuming that the amount of bending is small and that the
material satisfies a linear constitutive relation σ = Eε relating the stress to the strain. Referring to the
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1.3. INEXTENSIBLE ROD EQUATIONS 9

∆x

∆y
∆s

φ

φ

u
y

M

M + ∆MF

G

G + ∆G

F + ∆F
φ

φ + ∆φ

A

PP2

P1

Figure 1.7: To the left a rod segment of length ∆s experiences internal forces of F , G, a bending
moment M and an external force per unit length of ~P . To the right a portion of the rod is bent through
an angle φ. If the normal to the cross section remains normal, the displacement u = yφ.

right of Figure 1.7, a section of rod is bent through an angle φ. If this angle is sufficiently small then the
normal to the cross section will remain normal after the bending distortion and the the displacement
of the rod as a function of the distance from the neutral line is given by u = yφ. Since the bending
moment M for a given cross section is the sum of the moments about the neutral plane y = 0 these
assumptions give the relationship

M =

∫∫

A

yσ dA = E

∫∫

A

yε dA = Eφs

∫∫

A

y2 dA = EIφs. (1.6)

In this expression σ is the stress in the rod, and ε = du/ds is the corresponding strain. Equation (1.6)
is occasionally referred to as the Euler-Bernoulli assumption.

Letting the length of the segment ∆s shrink to zero gives the final set of equations satisfied by an
inextensible rod

xs = cosφ, (1.7a)

ys = sinφ, (1.7b)

ρAxtt = Fs + P1, (1.7c)

ρAytt = Gs + P2, (1.7d)

ρIφtt = Ms − F sinφ+G cosφ, (1.7e)

M = EIφs. (1.7f)

To nondimensionalise we assume that there is a circular cross section so that the radius R =
R0r(s), A = πR2

0r
2, and I = πR4

0r
4/4. Scaling the lengths with the length of the tail L we let

x̂ =
x

L
, ŷ =

y

L
, ŝ =

s

L
, t̂ =

t

T
,

F̂ =
F

K
, Ĝ =

G

K
, M̂ =

M

LK
, P̂i =

Pi

K
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10 CHAPTER 1. DINOSAUR TAILS

and identify three nondimensional quantities C1 = πρR2
0L

2/KT 2, C2 = πρR4
0/4KT

2 and C3 =
4KL2/πER4

0. The characteristic magnitudes of the force and time should reflect the physical proper-
ties of the tail. Consider a rod of length L which is clamped horizontally at one end, free at the other,
and bends under its own weight. If the rod has mass m and g is the gravitational constant then the
shape satisfies

ζ(iv) =
mg/L

EI
, ζ(0) = ζ ′(0) = ζ ′′(L) = ζ ′′′(L) = 0,

with solution

ζ(s) =
mg/L

24EI
s2(s2 − 4Ls + 6L2)

and a maximum displacement at s = L that satisfies

ζ(L)

L
=

1

8

mg

L2/EI
.

In this case the characteristic force for a rod that bends under its own weight is K = EI/L2 and
choosing this value for K sets C3 = 1. This leaves two natural choices for T . Either T = L

√

ρ/E or
T = 2L2

√

ρ/E/R0 in which C2 = 1 or C1 = 1 respectively. We choose the latter consequently

T 2 =
4ρπL4

ER2
0

=
ρπR2

0L
4

EI
,

C1 = 1, and C2 = (R0/2L)2 is a small parameter for a long thin tail and is denoted as ε.
Dropping hats the nondimensional equations are

xs = cosφ, (1.8a)

ys = sinφ, (1.8b)

r2(s)xtt = Fs + P1, (1.8c)

r2(s)ytt = Gs + P2, (1.8d)

εr4(s)φtt = Ms − F sinφ+G cosφ, (1.8e)

M = r4(s)φs (1.8f)

with 0 ≤ s ≤ 1, and r(s) = R(s)/R0 a nondimensional radius of the rod. Since ε is small, equa-
tion (1.8e) implies that if initially τ(s) = Ms − F sin φ + G cosφ 6= 0 then φ will change rapidly
with time until τ = 0. Conversely, equations (1.8c) and (1.8d) indicate that x and y will not appre-
ciably change during this equalization process. On the time scale of T , the ε term can be omitted and
expression (1.8e) can be replaced with

τ(s) = Ms − F sin φ+G cosφ = 0.

1.3.1 Boundary Conditions and Initial Conditions

Since the tip of the tail (s = 1) is free, the internal forces and bending moments vanish so that
F = G = M = 0. At the base (s = 0) it is not clear if one should consider a clamped, hinged, or
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1.4. DISCRETE BLOCK MODEL 11

simply supported condition. For a clamped base both the position and direction are specified fixing
x(t, 0), y(t, 0), xs(t, 0), and ys(t, 0) for all t. If the base is hinged then the position is fixed but the
bending moment M is zero. Finally, if the base is supported then it is free to slide and both the point
of contact and the direction are unknown. In this final case M = 0 and the direction of vector 〈F,G〉
must be perpendicular to the rod.

By initially assuming that the tail is in equilibrium and that there is no external forces acting on
the tail in the xy-plane (P1 = P2 = 0) we find that Fs = Gs = 0 so that both F (0, s) = F0 and
G(0, s) = G0 are constant. Since F and G are constant, the condition τ = 0 can be integrated to give
M(0, s) = x(s)G0 − y(s)F0 to avoid any fast dynamics.

1.3.2 Small Deflection Approximation

Suppose that the lateral deflection is small so that φ ' 0, P1 = P2 = 0 and (1.8a)-(1.8f) become with
ε = 0

xs = 1, ys = φ,

r2(s)xtt = Fs, r2(s)ytt = Gs,

Ms = Fφ−G, M = r4(s)φs.

This implies that the x co-ordinate of the rod coincides with the arc length, x = s, and the bending
moment M = r4(s)yss. Therefore

Gs = Fsφ+ Fφs −Mss = r2(s)xttys + Fyss − (r4(s)yss)ss = r2(s)ytt

or by setting x(t, s) = s,
Fyxx − (r4(x)yxx)xx = r2(x)ytt. (1.9)

If the tension in the x direction F = 0, as we expect near the tip of the tail, then the deflection y
satisfies

(r4(x)yxx)xx + r2(x)ytt = 0

which is the beam equation. Alternatively if the bending moment M and tension F are constant then

Fyxx = r2(x)ytt

which is the wave equation satisfied by a string under tension. In this small deflection limit, aspects of
both the wave and beam equations are contained in this inextensible rod model.

1.4 Discrete Block Model

Rather than a continuous tail, we can simplify the model by supposing that the tail consists of a finite
sequence of N discrete blocks that are connected by a stiff joint that allows rotation but no normal
displacement. The geometry and the applied forces are indicated in Figure 1.8.
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12 CHAPTER 1. DINOSAUR TAILS

xi,yi

xi+1,yi+1
∆φ

φi

φi+1

Mi+1
Fi

Gi+1

Fi+1
Gi

Mi

Li

Figure 1.8: Each block is characterized by a mass of ρAiLi where Ai and Li are the cross sectional
area and the length of the ith block. Forces and moments Fi, Gi,Mi act to the left of the ith black and
the segments are connected to one another by a stiff joint that allows rotation but no extension. The
grey area can be thought of as a uniform distribution of collagen springs with a spring constant ki.

The co-ordinates of the centre of mass of block i+ 1 is given by

xi+1 = xi +
Li

2
cosφi +

Li+1

2
cosφi+1, i = 1, 2, . . . , N − 1

yi+1 = yi +
Li

2
sin φi +

Li+1

2
sinφi+1, i = 1, 2, . . . , N − 1

and the origin is taken so that x1 = y1 = 0. In a similar fashion the net force and bending moment
acting on block i give for i = 1, 2, . . . , N − 1

ρAiLiẍi = Fi+1 − Fi,

ρAiLiÿi = Gi+1 −Gi,

ρIiLiφ̈i = Mi+1 −Mi −
Li

2
(Fi+1 + Fi) sinφi +

Li+1

2
(Gi+1 +Gi) cosφi,

where the dots denote differentiation with time. For i = N + 1, Li+1 = 0 and we choose FN+1 =
GN+1 = MN+1 = 0 since the last block has a free end. These are simply a discretised version of
the original extension free equations (1.7a)-(1.7f). What remains is a discrete version of the Euler-
Bernoulli expression relating the bending moment to the curvature of the tail.

Suppose that there is a uniform distribution of collagen springs in the gap between blocks i and
i+1. Let ki denote the spring constant measured so that a uniform displacement of length li, the springs
equilibrium length, generates a restoring force of −ki. In this case the units of ki is force/area rather
than the standard force/length. If we instead suppose there is an angular displacement of φi+1 − φi =

π



1.5. CONCLUSION 13

∆φ 6= 0 then the springs on one side of the pivot are compressed and the springs on the other side
are stretched from their equilibrium length. Each of the springs contributes a force F = −kix∆φ/li
where x is the distance of a given spring from the pivot point and the total force is

Ftot = −
∫∫

A

ki∆φ

li
x dA = 0

so that the internal forces are not modified by the rotation of ∆φ.
The bending moment does changes since

Mi =

∫∫

A

xF dA =

∫∫

A

ki∆φ

li
x2 dA =

kiIi∆φ

li
(1.10)

where Ii is the moment of inertia of the cross section of block i. If we compare this with a discrete
version of the Euler-Bernoulli expression we have

Mi = EiIi
∆φ

∆s
= EiIi

∆φ

(Li/2 + Li+1/2
) =

kiIi∆φ

li
.

So we see that equation (1.10) is a discrete version of the Euler-Bernoulli expression with an elastic
modulus of

Ei =
ki

2li
(Li + Li+1)

consistent with a stress of magnitude ki generating a strain of li/(Li/2 + Li+1/2).
In summary the discrete block solution must satisfy for i = 1, 2, . . . , N − 1

xi+1 = xi +
Li

2
cos φi +

Li+1

2
cosφi+1, (1.11a)

yi+1 = yi +
Li

2
sin φi +

Li+1

2
sin φi+1, (1.11b)

ρAiLiẍi = Fi+1 − Fi, (1.11c)

ρAiLiÿi = Gi+1 −Gi, (1.11d)

ρIiLiφ̈i = Mi+1 −Mi −
Li

2
(Fi+1 + Fi) sinφi +

Li+1

2
(Gi+1 +Gi) cosφi, (1.11e)

Mi =
kiIi
li

(φi+1 − φi) (1.11f)

where the ẍi and ÿi in the third and fourth expressions must be consistent with the first two expressions.
Furthermore, the internal tension and moments of the first block F1, G1, M1 should be chosen to
emulate the time dependent forces that the hip exerts on the tail and FN = GN = MN = 0 at the free
end of the tail.

1.5 Conclusion

Having considered a cross section of both bipedal and quadrupedal dinosaurs we found that the scaling
laws give a first indication that the proportions are typically chosen to balance the dinosaur as opposed
to acting as an aid to locomotion.
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14 CHAPTER 1. DINOSAUR TAILS

Two models for the motion of the tail were explored. The first of these was a continuous model
and for small deflections it was shown to include aspects of the dynamics of a thin beam as well as
the dynamics of wave motion. This is very encouraging since both of these behaviours are seen in the
tails of modern day animals. Unfortunately the resulting equations are a set of strongly coupled partial
differential equations and more time is required to fully develop a solution consistent with the mass
distribution of a given dinosaur.

To simplify the situation a discrete version of the continuous model was developed where the tail
is broken into N blocks joined together with a stiff connection that allows rotation but no extension.
Once again the result is a set of strongly coupled equations, but there is improvement. First, we are
left with ordinary differential equations and second, the Euler-Bernoulli equation in the continuous
model is recovered in the discrete model as a result of the behaviour of the springs in each joint. In
some sense this result is not really unexpected since the discrete model is simply the continuous model
written as a numerical implementation of the method of lines.

The next step is to simulate the motion of a tail predicted with the discrete block model for a
living animal to estimate the model predictability. Choosing many segments for the tail of varying
stiffness (Ebone ' 20GPa, Ecollagen ' 1GPa) should produced reasonable dynamics. Once this has
been accomplished, one can assess the degree to which a tail would have aided in the locomotion of
pedal and quadrupedal dinosaurs.
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2.1 Introduction

The Automated Footwear Testing System (AFTS) is a robotic system designed to replicated the move-
ment and loading of a shoe as it contacts the ground during common human movements. By doing so,
the AFTS can serve as a system for the functional testing of different footwear designs in a manner
that is difficult to achieve by standard testing systems. The AFTS consists of four main components:
a robotic Stewart platform, a rigid fixed frame, a load cell and a prosthetic foot. Motion of the foot
relative to the ground is created by rigidly fixing the foot to the frame and moving the platform rel-
ative to the foot. See Figure 2.1. The Stewart platform has six degrees of kinematic freedom and
can reproduce the required complex three-dimensional motion path within the limitations of its range
of motion. While the platform is in contact with the footwear, the six-axis load cell measures the
three-dimensional forces and moments acting on the prosthetic foot.

It has been shown that when a human subject performs the same movement with two different
pairs of shoes, she will adjust her stride so that she feels similar forces on her legs, regardless of the
footwear. That is, when testing footwear, it can be assumed that the force profiles will be the same for
the different shoes, while the movement path will differ from shoe to shoe. Thus, a good shoe is a one
that does not lead to an unstable or unnatural movement path, e.g., one that might lead to an overturned
ankle, or one that might lead to the need for an overcompensation that could result in an ‘over-use’
injury. In order for the AFTS to be most effective at testing a wide variety of design features, it would
be necessary to develop a means of determining, for any given shoe, a movement path that would
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18 CHAPTER 2. FORCE-CONTROL FOR THE AFTS

Figure 2.1: The Automated Foot Testing System consisting of the robotic Stewart platform, the pros-
thetic foot (shown here with shoe attached), the rigid frame, and the load cell (the cylinder just above
the shoe).

generate some specified forces and moments that are representative of those that would be generated
during the stride of some ‘typical’ human. This movement path could then be analyzed to determine
if it is more or less likely to lead to injury.

The force profiles and movement paths for specific types of movements can be acquired experi-
mentally. A time-series of forces can be acquired as a human subject’s foot impacts a footplate during
a stride, and markers on the shoe can be tracked in order to acquire a time-series of the position of
the foot, i.e., a movement path. The position data includes the x, y, z positions, as well as the angles
that the foot rotates about the x, y and z axes. These angles are generally referred to as roll, pitch and
yaw, respectively, and we will denote them as α, β, and γ, respectively. The forces measured by the
footplate are used to calculate forces in three directions Fx, Fy and Fz, and the moments Mx, My, and
Mz, about the x, y and z axes, respectively, in the foot coordinate system. These forces and moments
can be used as those felt by a typical human, i.e., the ‘target forces’.

For the AFTS, a movement path is specified, translated into platform coordinates and executed
on the machine. During the execution, the load cell measures the forces and moments that act on
the prosthetic foot. We wish to find the particular movement path of the Stewart platform that will
generate the target force profile. Thus, we are interested in solving an inverse problem. The main
goal of the workshop was to investigate potential solution methods for this ‘force-control’ problem,
including looking into its feasibility.
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2.2. CLOSED-LOOP FORCE CONTROL 19

When the same shoe used by the human subject is mounted on the prosthetic foot of the AFTS,
and the experimentally measured movement path is replicated on the Stewart platform, the forces and
moments measured to be acting on the prosthetic foot do not match the experimental data. The forces
acting normal to the ground/platform are similar in magnitude for both cases. However, the forces
acting parallel to the ground/platform are not similar. Thus, before using the AFTS to test different
footwear, it is necessary to determine the platform movement path that leads to the target force profiles
for the ‘control’ shoe, i.e., the shoe used during the acquisition of the target force profile. This may also
be viewed as a force-control problem. It may be reasonable to use such an approach if the discrepancies
between the movement paths for the human subject and platform are relatively small. However, if they
are sufficiently large, it would lead to difficulty in the interpretation of any testing results. That is, the
causes of these discrepancies may reveal information regarding the feasibility of using force-control
as a means of testing footwear. Thus, we seek possible origins of the discrepancies.

We first investigate the possibility of performing a closed-loop control of the forces. That is,
we investigate the possibility of adjusting the position of the platform at discrete points along the
movement path until the forces measured by the load cell of the AFTS match the target forces at that
point. The results, discussed in Section 2.2, indicate that there are some fundamental issues that must
be considered before the AFTS can reliably be used as a testing system. We study two such issues.
The first study looks at the effects due to the choice of the origin of the platform coordinate system.
See Section 2.3. This choice might effect how the Stewart platform executes the specified motion,
and thus might effect the measured forces. In the second study, presented in Section 2.4, the system is
modelled as a simple elastic body in order to gain some information regarding the feasibility of solving
the inverse problem. The results suggest that it may be more appropriate to take a global rather than
local approach to controlling the forces. In Section 2.5, we discuss the possibility of parameterizing
the movement path using cubic splines, and then minimizing, with respect to the parameters of the
curves, a functional that is small when the measured forces are near the target forces. Conclusions
follow.

2.2 Closed-loop Force Control

We wish to find the series of platform positions (i.e. the movement path) that will lead to the force and
moment profiles that are measured in the human subject (i.e. the target forces). One possible means
of achieving this would be to perform a ‘closed-loop’ force control. That is, at discrete intervals along
the path, the platform position is adjusted until the forces and moments that are measured at the load
cell match the target forces. Ideally, it would be possible to perform a Newton-type iteration, where
the initial guess could be either the experimentally measured position or the position found at the
previous step, and an approximate Jacobian could be computed by measuring the changes that occur
in the three forces and three moments as the six position variables are incremented successively by a
small amount, while the other position variables are held constant at their initial values. That is, the
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approximate Jacobian could be given by

J =







































∆Fx

∆x
∆Fx

∆y
∆Fx

∆z
∆Fx

∆α
∆Fx

∆β
∆Fx

∆γ

∆Fy

∆x
∆Fy

∆y
∆Fy

∆z
∆Fy

∆α
∆Fy

∆β
∆Fy

∆γ

∆Fz

∆x
∆Fz

∆y
∆Fz

∆z
∆Fz

∆α
∆Fz

∆β
∆Fz

∆γ

∆Mx

∆x
∆Mx

∆y
∆Mx

∆z
∆Mx

∆α
∆Mx

∆β
∆Mx

∆γ

∆My

∆x

∆My

∆y

∆My

∆z

∆My

∆α

∆My

∆β

∆My

∆γ

∆Mz

∆x
∆Mz

∆y
∆Mz

∆z
∆Mz

∆α
∆Mz

∆β
∆Mz

∆γ







































. (2.1)

In practice, this could be computed by incrementing a single position variable, measuring the forces,
incrementing that position variable back to its original value, and repeating this for each of the position
variables. Once the approximate Jacobian is computed, it could be used to choose the next iterate. The
platform would then be moved into the corresponding position, and the forces would be measured. If
the forces are still not sufficiently close to the targets, another iteration could be performed, perhaps
via a quasi-Newton iteration, or perhaps a new Jacobian could be computed. This procedure would
continue until the desired forces are obtained to within a given tolerance. We could then proceed to the
next point along the movement path, and find the platform position corresponding to the target forces
that are required at this new point.

For this method to be feasible, the computed Jacobians must be non-singular. In order to test this,
we computed the approximate Jacobian on the AFTS at two points along the movement path. The
most striking result was that when certain position variables were incremented and returned to their
starting values, the measured forces did not return to their original values. Even when the position
variables were incremented by as little as 0.1mm and returned to their original values, the forces and
moments could be as much as 5% different from their starting values.

Upon inspection of the AFTS in use, it was found that certain movements caused the shoe to
slip along the platform. Such irreversible behaviour will greatly hinder any force-control procedure.
Indeed, the discrepancies between the forces measured for the human subject and those measured for
the platform for the same movement path could be caused to a large extent by the slipping. This is
consistent with the observation that the forces normal to the ground/platform are sufficiently similar,
while the tangent forces are not.

It is not surprising that when the approximate Jacobian was formed, we found that it was singular.
It was seen, however, that only certain directions were irreversible, and it was speculated that this was
caused by slipping when increments were made in these directions. In order for force-control to be
possible, steps must be taken to reduce the slipping as much as possible. The platform being used
for the data acquisition was quite worn, which likely exacerbated the problem. Thus, it is possible
that the installation of a new platform surface designed to limit slipping would greatly improve the
prospects. Either way, a method that minimizes slipping, in particular in the specific directions, will
greatly increase the chances of success.
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2.3 Stewart Platform Dynamics

It is expected that even when steps are taken to reduce slipping, a path-dependence of the forces
measured at the load cell will likely linger. Thus, it is not only important to improve reversibility, but
also to maximize reproducibility.

A run of the AFTS begins by raising the platform until it comes in contact with the shoe. The
origin of the platform coordinate system is chosen as this initial point of contact. Currently, care is not
taken to ensure that this point of contact is the same for each run. However, due to the method that
is used to transform the experimentally measured movement path into platform positions, the choice
of the origin of the platform coordinate system will affect the resulting platform movement path (see
below). We therefore investigate the magnitude of this effect so that we may determine whether this is
a potential cause of error, and whether care must be taken to choose the origin to be the same for each
run of the AFTS.

Thus, we need to look into the dynamics of the Stewart platform. The platform has six degrees of
freedom determined by the length of the actuators (legs), where each set of leg lengths corresponds to
a unique position and orientation of the platform.

The actual platform path is not directly specified by the user. The user supplies a series of ‘way-
points’, which are a series of positions that the platform must pass through, but the user does not have
control over the path that is taken to go from one way-point to the next. The path between each pair of
way-points is determined by an algorithm that requires all actuators to start and stop at the same time.
Thus, these intermediate paths may be quite different depending on where the shoe initially contacts
the platform (i.e., the choice of origin for the platform coordinate system). Because we were not able
to test this on the AFTS itself, we performed a theoretical investigation of the path differences that
might occur for three different origin locations, as shown in Figure 2.2. A central location was chosen,
then the two other locations were chosen 5cm away from this central location along the x and y axes,
respectively. We computed the platform paths by first computing the leg lengths corresponding to a
series of way-points using the software package designed for this purpose. By assuming that during
the transition between the way-points all the actuators would start and stop at the same moment, we
determined a series of leg lengths that would occur between each of the way-points. We then used
numerical methods to invert the nonlinear relation between the leg lengths and platform position, and
obtained the intermediate platform positions that corresponded to the intermediate leg lengths.

A sample of results is plotted in Figure 2.3. An interesting observation is that the movement path
has kinks at the way-points. It can also be seen that indeed the paths are different depending on the
location of the coordinate system, although they are not more than 0.002mm for any given position
variable. However, we did see that increments as little as 0.1mm could cause significant changes in
the forces. Furthermore, it might be expected that there would be a cumulative effect. Thus, it is not
clear that these small path differences would not have an effect on the measured forces. Therefore, to
be sure that errors are not introduced, we suggest that care be taken to ensure that the origin is chosen
as much as possible in the same location for each run. This may increase the reproducibility, and thus
the reliability of the testing system.

π



22 CHAPTER 2. FORCE-CONTROL FOR THE AFTS

5 cm

Beginning locations of 

identically prescribed 

motions

5 cm

5 cm

Beginning locations of 

identically prescribed 

motions

5 cm

Figure 2.2: Three different origins of the platform coordinate system.

2.4 Feasibility Study

In the problem described above, we are trying to determine the displacements that must be imposed at
the lower boundary (i.e., the bottom of the shoe) in order to generate some specified forces at the upper
boundary (i.e., the load cell). To demonstrate the difficulty involved in solving these types of inverse
problems for elastic bodies, we study a simple forward problem. We determine the displacements that
occur in a planar elastic block for three different sets of lower boundary conditions (i.e., displacements
that are imposed at the lower boundary). See Figure 2.4. We then calculate the forces that are generated
at the upper boundary due to the resulting displacements. If we assume that the lower boundary
is linear (i.e. that the displacements at the lower boundary vary linearly), we can choose the three
boundary conditions such that they form a ‘basis’ for all possible boundary conditions. The situation
when the lower boundary is linear corresponds to the case when the platform is in contact with the
whole shoe. Although this is not a good assumption for many of the motions of interest, it is sufficient
for the purposes of this feasibility study.

The displacements in the elastic block are described by the Navier equations

(λ+ 2µ)
∂2u

∂x2
+ µ

∂2u

∂y2
+ (λ+ µ)

∂2v

∂x∂y
= 0, (2.2)

µ
∂2v

∂x2
+ (λ+ 2µ)

∂2v

∂y2
+ (λ+ µ)

∂2u

∂x∂y
= 0, (2.3)

where u(x, y) is the displacement from the ‘no force’ position in the x direction, v(x, y) is the dis-
placement in the y direction, and the constants λ and µ are the Lamé coefficients. The lower and upper
boundary are taken to be at y = 0 and y = 1 respectively, while the side boundaries are taken to be at
x = 0 and x = 1. At the upper boundary, we assume no displacements, i.e. we have u(x, 1) = 0 and
v(x, 1) = 0, while we take the boundary conditions on both sides to be stress free, i.e. we take

(λ+ µ)
∂u

∂x
+ λ

∂v

∂y
= 0 and µ

(

∂u

∂y
+
∂v

∂x

)

= 0 (2.4)

at x = 0 and x = 1.
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Figure 2.3: Platform dynamics. (a) A portion of a typical path taken by platform; kinks occur at the
way-points, (b) three different paths corresponding to the three different ‘platform origins’ depicted in
Figure 2.2.

For the three different cases, we chose three different lower boundary conditions. See Figure 2.4. In
the first case, we choose u(x, 0) = c and v(x, 0) = 0, where c is some constant. This case corresponds
to pure shear in the x direction. For the second case, we consider pure compression in the positive y
direction, i.e., we have u(x, 0) = 0 and v(x, 0) = a, where a is some constant. In the third case, we
take u(x, 0) = 0 and v(x, 0) = bx, where b is some constant, which corresponds to a lower boundary
that ramps linearly from zero compression at x = 0 to a maximum compression at x = 1. Any linear
condition on the displacements at the lower boundary can be represented as linear combinations of
these three input displacements.

We solve this system of partial differential equations (2.2–2.3) numerically using finite differences
on a 50 × 50 grid. We choose the constants λ = 1, µ = 1/2, a = 0.5, b = 0.5, and c = 0.5.

Once the displacements have been found, the forces and moment can be calculated using

Fy =

∫
(

(λ+ 2µ)
∂v

∂y
+ λ

∂u

∂x

)

dx (normal) (2.5)

Fx =

∫

µ

(

∂u

∂y
+
∂v

∂x

)

dx (shear) (2.6)

M =

∫

x

(

(λ+ 2µ)
∂v

∂y
+ λ

∂u

∂x

)

dx (moment). (2.7)

We are interested in the values for these forces at the upper boundary (y = 1). We denote the normal
force at the upper boundary as F1, the stress along the upper boundary as F2, and the moment as M ,
and calculate each of these for each of the three boundary conditions. We obtain a 3 × 3 matrix that
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x = 0 x = 1

y = 0

y = 1

u(x,0) = c

v(x,0) = a + b x

u(x,1) = 0,  v(x,1) = 0

F  , F  , M   yx x

Figure 2.4: An elastic block of unit length and height. Lower boundary conditions for the displace-
ments u(x, y) and v(x, y) are different for the three different cases that are studied (corresponding to
different values of the constants a, b, and c), while the side and upper boundary conditions are the
same.

defines the relationship between our input displacements and our output forces:

A =





F11 F12 F13

F21 F22 F23

M1 M2 M3





where Fij is the force i in the jth case, and Mj is the moment in the jth case. With the displacement
fields computed above, this matrix becomes

A =





−0.0053 0.5768 0.2845
−0.0147 0.0041 −0.0099
0.0112 0.2845 0.1426



 .

The condition number of this matrix, which is the ratio of singular values, indicates the sensitivity
of the forces to the changes in the boundary conditions. If the condition number is small, then we
would expect that changes in the lower boundary would cause changes of a similar magnitude in the
force, which would indicate that the inverse problem was well-conditioned. However, if the condition
number is large, then we might expect that the matrix is close to singular, which would imply that the
columns are close to being linearly dependent, which in turn would imply that different combinations
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of inputs would produce very similar outputs. That is, the forces are not very sensitive to changes in
the lower boundary, and thus, the inverse problem is not very well conditioned.

The condition number for the matrix A is given by

cond(A) = 147.7,

indicating that the forces are not very sensitive to changes in the lower boundary. This can be seen
more clearly in Figure 2.5, in which the forces (represented by the three plots on the right side of the
figure) generated by variation of the lower boundaries conditions (shown on the left of the figure) are
presented on the same plot. It can be seen that even large differences in the lower boundary conditions
can result in only small changes in the forces.

This example provides evidence regarding the difficulty that may be involved in attempting to
determine the lower boundary conditions given the forces at the upper boundary. That is, the inverse
problem may not be well-conditioned. In such cases, finding solutions becomes difficult. Iterative
methods tend to converge slowly, and it is possible that they may not converge at all.

However, these results depend on the specific choices of the parameters of the problem λ and µ.
Because we did not know the actual values of these parameters for the shoe, reasonable approximations
were chosen. Errors in this choice may affect the conclusions of this example.

Factors that effect the conditioning that we have not considered include the movement of the shoe
on the prosthetic foot, which is expected to lead to poorer conditioning. Such movement would de-
crease the sensitivity of the forces due to changes in the lower boundary, and thus increase the condition
number.

The zero displacement condition assumed at the top the prosthetic foot is almost certainly not
satisfied by the human foot and hence, no matter what continuum model is used for the foot-shoe
combination, any attempt to examine the problem analytically will lead to different results for the two
problems even if the displacement conditions at the shoe plate interface can be accurately reproduced.

2.5 Movement Path Parameterization

The evidence presented above indicates the difficulty involved in using closed-loop force control to
solve this problem. We, therefore, explore the possibility of non-locally controlling the forces along a
parametrized movement path. It is expected that the conditioning of the inverse problem will still be an
issue for this approach. However, variation of the parameters of the movement path would not lead to
unnatural movements, which would reduce (perhaps eliminate) the need to make platform adjustments
in directions that would cause unavoidable slipping. Because we did not have sufficient time during
the workshop for a full investigation, we describe only briefly how one might go about using path
parametrization in this problem.

We begin by parameterizing the position data obtained from the human subject. We proceed by
choosing several points on the curves of each of the position variables. Examples for the spatial
coordinates are shown in Figure 2.6. The number and position of the points are chosen in such a
way as to maximize the reproduction of the qualitative features of the curves while minimizing the
number of parameters needed. For example, for the z position data, it was judged that four points were
necessary to obtain a parametrized curve that could approximate both the sharp increase and decrease
that is observed at the beginning and end, respectively, of the time-series. After the points have been
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chosen, cubic spline interpolation can be used to obtain the parametrized approximation to each of the
curves.

For data acquired during the contact phase of a heel-toe run, the time-series of the six position
variables could be reproduced reasonably well by fitting cubic splines to a total of 34 points. The
position data for the 3 spatial coordinates is shown in Figure 2.6; data for the 3 angles is not shown.
Thus, the path can be written as a function of the 34 parameters

Path = P (p1, p2, . . . , p34),

where pi are the path parameters that can be adjusted to vary the movement path. An example of how
the path might change when one of the parameters is varied is shown in Figure 2.7.

The forces can now be measured as the AFTS executes the initial parameterized path taken from
the human subject data. That is, we have

Force = F (P ),

and we would like to find the 34 parameters pi that will reproduce the target force profile Ftarget. In
practice, we will try to minimize some functional (e.g. with respect to the L2 norm) of the force and
target force profiles over all possible parameter values. That is,

min
P

‖Ftarget − F (P )‖2.

A standard method, perhaps a non-Jacobian method such as a polytope algorithm, might be used for
the minimization.

For the closed-loop force-control problem, we look for zeros of a function of six variables for
each interval along the path, whereas, here we are minimizing a single functional over 34 parameters.
Although only one minimization problem needs to be solved, a large number of parameters are in-
volved. The question arises whether such a method is feasible. Indeed, even if a Jacobian need not be
calculated, a single ‘function evaluation’ consists of a full run of the AFTS, which took much longer
than one minute. It is not known how many such function evaluations would need to be executed to
determine the path parameters. However, it could possibly be in the hundreds. It is possible that a suf-
ficient solution could be obtained by variation over only a smaller subset of the path parameters. These
and other considerations require extensive further study before such a method could be implemented
effectively.

2.6 Conclusions

We would like to determine the particular movement path that would generate a specified target force
profile. We examined the feasibility of performing a closed-loop control of the forces, and found
that the nature of the problem does not lend itself well to this method. We do not conclude that it is
impossible to use closed-loop force control to solve the problem. However, the evidence indicates that
it would be very difficult to do so.

Parametrization of the movement path is one possible alternative. The promising feature of this
method is that it would not lead to unnatural movements that could cause the shoe to slip along the
platform. Thus, it is expected that the reproducibility of force measurements would be significantly
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improved. The conditioning of this method is not known; further study is required before conclusions
regarding the method’s feasibility can be made. Such investigations would require extensive data
acquisition using the AFTS itself.

Regardless of the method used, we discovered that it is necessary to reduce slipping of the shoe
along the platform as much as possible. Simply resurfacing the platform may lead to significant im-
provements in this respect. We also found that the platform will follow a different trajectory depending
on the origin of the platform coordinate system. Although the path differences are small, significant
cumulative errors may arise. Thus, it would be prudent to ensure that the platform origin does not vary
from run to run.
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Figure 2.5: The two curves in the left panels represent two different sets of boundary conditions, i.e.
of the constants a and b representing the amount of compression at the bottom boundary and slope of
the bottom boundary, respectively, where the y-axis gives the values of the constants and the x-axis
represents a parametrization for the changes in the constants. The curves in the right panels show the
resulting differences in the forces, i.e., large changes in the boundary conditions only result in small
changes in the forces, where the y-axis gives the values of the forces and the x-axis represents the
same parametrization as in the left panels.
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Figure 2.6: Position data in the x, y, and z directions for a heel-toe run of a human subject. Points
along the curves (the circles) have been chosen such that spline interpolants through these points will
reasonably reproduce the curves.
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Figure 2.7: Spline interpolants of the points taken from the x, y, and z position data of a heel-toe run
of a human subject, as shown in Figure 2.6. Variation of one of the points represents how the path can
change as the path parameters are varied.
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Chapter 3

Seismic Image Analysis Using Local Spectra

Problem presented by: Pierre Lemire & Rob Pinnegar (Calgary Scientific Inc.)

Mentors: Elena Braverman (University of Calgary), Michael Lamoureux (University of Calgary),
Qiao Sun (University of Calgary)

Student Participants: John Gonzalez (Northeastern University), Hui Huang (University of British
Columbia), Parisa Jamali (University of Western Ontario), Yongwang Ma (University of Calgary),
Hatesh Radia (University of Massachusetts at Lowell), Jihong Ren (University of British Columbia),
Dallas Thomas (University of Lethbridge), Pengpeng Wang (Simon Fraser University)

Report prepared by: M. Lamoureux (mikel@math.ucalgary.ca)

3.1 Introduction

During the one week Industrial Problem Solving Workshop held in June 2005 at the University of
Calgary, hosted by the Pacific Institute for the Mathematical Sciences, our group was asked to consider
a problem in seismic imaging, as presented by researchers from Calgary Scientific Inc. The essence
of the problem was to understand how the S-transform could be used to create better seismic images,
that would be useful in identifying possible hydrocarbon reservoirs in the earth.

3.2 Problem Description

Our group was presented with the following summary of the problem under consideration:

Calgary Scientific Inc. is currently developing a technique to classify pixels in seismic
pseudosections based on their local spectral characteristics. These are obtained from a
modified Gabor transform, in which only certain (kx, ky) wavevectors are represented
in the local spectrum of each pixel. This classification technique involves finding the
dominant peak in each local spectrum, and identifying the corresponding pixel with the
wavevector and amplitude of the dominant peak.
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This method proved ineffective since it is inflexible when one wants to investigate any in-
teresting features not associated with the dominant peak. The identification of secondary
peaks is complicated by the fact that dominant peaks typically cover several pixels of its
local spectrum; hence, the wavevector with the second largest amplitude is likely to con-
tain a significant contribution from the primary peak. The main goals were to efficiently
identify secondary peaks and to identify correlations amongst peaks from pixel to pixel.

Ideally, a fully processed seismic pseudosection should contain all the information the
interpreter needs to unambiguously identify potential drilling targets, such as reefs, anti-
cline traps, and so forth. This involves identifying layer boundaries on the pseudosection,
a process that can be considered as more or less equivalent to identifying the layers them-
selves as continuous groups of pixels. The presence of significant amounts of noise in the
data, and the accumulation of errors during the numerical steps of seismic processing, can
complicate this process by obscuring important features in the pseudosection. A final goal
is to improve the signal to noise ratio to facilitate interpretation of the pseudosection.

There were a number of researchers on the project with expertise in seismic imaging, and an
important first step was to understand what aspect of the imaging problem we were being asked to
study. However, since we would not be working directly with raw seismic data, traditional seismic
techniques would not be required. Rather, we would be working with a two dimensional image, either
a migrated image, a common mid-point (CMP) stack, or a common depth point (CDP) stack. In all
cases, the images display the subsurface of the earth with geological structures evident in various
layers. Figure 3.1 is a typical sample image.

Figure 3.1: A sample seismic section.

For a given image the local spectrum is computed at each point resulting in a surface similar to
Figure 3.2. The various peaks in the spectrum are used to classify each pixel in the original seismic
image resulting in an enhanced and hopefully more useful seismic pseudosection.
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Figure 3.2: A typical local spectrum.

Thus, the objective of this project was to improve the identification of layers and other geological
structures apparent in the two dimensional image (a seismic section, or CDP gather) by classifying and
coloring image pixels into groups based on their local spectral attributes.

3.3 Spectral Background

The local spectra of the pixels are obtained from the Stockwell, or S-transform, which is a time-
frequency spectral localization method similar to the short-time Fourier transform (STFT) [7]. The
S-transform of the one-dimensional function h(x) is defined as

S(x, k) =

∫

∞

−∞

h(x′)
|k|√
2π
e−(x−x′)2k2/2e−2πikx′

dx′.

Because
∫

∞

−∞
S(x, k) dx = H(k), the Fourier transform of h(x), one can verify that h(x) is recover-

able from its S-transform. One can interpret the S-transform as a continuous wavelet transform where
the mother wavelet is a Gaussian in which the wavenumber k plays the role of a dilation. This def-
inition is easily generalized to higher dimensions and for the two-dimensional seismic images under
consideration the Stockwell transform takes the form

S(x, y, kx, ky) =

∫

∞

−∞

∫

∞

−∞

h(x′, y′)w(x− x′, y − y′, kx, ky)e
−2πix′kxe−2πiy′ky dx′ dy′, (3.1)

where h(x, y) is the pixel intensity of a given location and w(x, y, kx, ky) is the corresponding two-
dimensional Gaussian window. The Stockwell transform S(x, y, kx, ky) indicates the strength of the
frequencies with wavenumbers (kx, ky) in a neighbourhood of the point (x, y). The attributes of in-
terest in this localized spectrum were identified to be the wavenumber (kx, ky) and the magnitude of
any peaks in the function S(x, y, kx, ky) as (x, y) varies across the image. These peaks are then used
to classify the pixels.

The focus, then, is on identifying peaks in the local spectrum. There remained three main issues
that the company wished to be addressed:
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1. In Calgary Scientific’s current algorithm, the four-dimensionalS-transform is collapsed to a two-
dimensional image by identifying each pixel with the wavevector at which its local S-spectrum is
largest. That is, one particular peak is identified. This approach assumes that only one waveform
is important at any pixel in the image.

2. A reliable means of automated edge detection is elusive. Although the approach described above
can be used to produce a visually interpretable pseudo-image, it cannot be used to divide the
image into layers because the peak wavevector can vary from pixel to pixel within a particular
layer.

3. In Calgary Scientific’s implementation, the S-transform is evaluated at a set of positions {(x, y)}
which changes as the wavevectors change. This complicates any pattern matching because the
local S-spectra of adjacent (x, y) pixels are typically not defined on the same set of wavevectors.
There are some standard techniques to account for this but they all introduce artifacts in the
transformation. Is there a better way to compute the transform at all interesting positions (x, y)
and wavenumbers (kx, ky)?

3.4 Addressing Issue One: Identifying Spectral Peaks

In the sample data sets that we considered, the spectral peaks were all remarkably smooth, and
Gaussian-like. Whether this was a property of the data, or a property of the S-transform was not
investigated in detail. However, it appears that it is a reflection of the redundancy in the S-transform.
The smoothness, and Gaussian shape, suggested a number of approaches for identifying peaks. A
summary of the ones we considered were:

• Reduce the two-dimensional peak selection problem to a series of one-dimensional problems.
Using the slicing technique, we can consider all one-dimensional sections of the spectrum and
analyze the peak structure of each slice. From this we identify the peaks of the entire spectrum.
In the one-dimensional slice, the spectrum appears smooth enough (twice differentiable), to find
and classify all the maxima.

• Use a discrete, derivative to find critical points, and identify peaks. Since the function is smooth,
this technique should rapidly identify the few peaks there are. Ranking them by height is simple.

• Represent the function as a sum of Gaussians and use a least squares technique to specify their
individual parameters. After that, the highest peaks are easily classified.

• Identify the highest peak and subtract an appropriate Gaussian-like function centered at this
peak. After the subtraction, find the highest peak and repeat the procedure. It was believed that
this could expose high peaks shadowed by adjacent higher peaks.

• Use clustering techniques to group the data around peaks, thus dividing all the data into several
groups associated with various peaks. Later these groups can be ranged in accordance to the
peak values.
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Code for each of these attempted techniques can be found in the Appendix. The subtraction method
was the most successful and is worth discussing in further detail. The location of the first peak is
identified by searching for the highest data point in the matrix of spectral points. In a neighbourhood
of this peak the function is approximated by a two-dimensional Gaussian with a width optimized to
best fit the data. This best-fit Gaussian is then subtracted from the spectrum, and we have a data set
with one peak removed. The process is then repeated (identify new peak, fit with Gaussian, subtract
Gaussian) until all significant peaks are identified. Empirically, the first three or four peaks might be
of interest.

Figure 3.3 gives a demonstration of how the method works. In the first panel, we see two large
narrow peaks. By matching with an appropriate Gaussian, those peaks are subtracted leaving the
spectrum in the middle panel. Two large, wide Gaussians are then identified as the next peaks and are
again subtracted leaving the third panel. This sequence is repeated until all the major peaks have been
identified. Symmetry in the spectrum allow the peaks to be removed in pairs.

Figure 3.3: A sequence of peaks being subtracted from the data.

Also interesting is why the other methods failed. The slicing technique failed because one-dimensional
slices do not uniquely identify two-dimensional peaks. However, the analysis of this proposed tech-
nique lead naturally to the two-dimensional derivative method.

The two-dimensional derivative technique identified far too many local extrema. Although most
of these were down in the noise level of the data, it took a significant amount of computing time to
distinguish between real peaks and extrema at the noise level of the spectrum. In the end, this method
was not computationally efficient.

The least squares technique also failed because of high computational costs. On the surface this
seems counterintuitive since the least squares methods is well-known for its speed. However, here
we were looking to optimize over a sum of Gaussians, where the heights, widths, and locations were
variables to be optimized. This is a highly non-linear problem and a computationally efficient method
was not obtained in the week of the workshop.

Finally, the clustering technique also failed for computational reasons. We tried using a standard
implementation of the k-mean algorithm [4], and discovered that classifying pixels for one-tenth of our
image took over two hours to compute. This was judged excessive, and well beyond what we hoped
for in classification.
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3.5 Addressing Issue Two: Edge Detection

The idea here is that near a linear feature in the original two-dimensional image, such as along an
edge, the local spectra should not vary much from pixel to pixel. Consequently, it should be possible
to identify correlations between spectral peaks as one moves from pixel to pixel. To test this idea,
one can begin with the peak identification algorithm in Section 3.4, and apply some statistical tests for
correlations.

Unfortunately, one week was not long enough to allow us to get both the peak detection algorithm
working and statistically analyse the results. A larger database of seismic images and corresponding
S-transforms would be required to pursue this avenue of research.

It is worth noting that the local spectral information of the S-transform varies slowly from pixel
to pixel, so there should be quite a high level of correlation. What is required is a statistical test that
can distinguish correlations that come from data with those that are merely a reflection of the slowly
changing nature of the S-transform.

There were also suggestions to use some alternatives of S-transform. In particular, the application
of methods which identify local spectra not at each individual pixel but from a group of adjacent pixels.
Some adaptive methods were proposed as follows:

• The localized Fourier method. This method also has an adaptive version which can be applied
to various time grids.

• Certain wavelet-like techniques for directional analysis, such as brushlets, ridgelets, or curvelets [8].
These wavelet bases were originally developed for directional image processing and identifying
slanted patterns. Such techniques seem directly applicable to these seismic images.

3.6 Addressing Issue Three: Computing the S-transform

This was probably the most challenging issue to address. A direct implementation of the S-transform
is highly redundant and leads to a massive amount of data, as each data point is transformed into a full
spectrum. For instance, a simple 100 by 100 image transforms into 100 million data points (100 ×
100)2. The company does have some impressively fast algorithms for computing an approximation to
the complete transform, but with this level of redundancy, the question must be asked: are there better
approaches? We did not have access to their implementation of the algorithm, so direct investigation
of how it was implemented, or how it could be improved, were not possible. Some possible ideas to
pursue include:

• compute a sparse subset of the transform and apply interpolation for the intermediate points;

• compute a sparse subset of the transform and use this directly to estimate peaks;

• investigate if an analog of a fast transform (FFT, wavelet, etc.) could be applied to the S-
transform. In particular, the S-transform looks very similar to a phase-shifted continuous wavelet
transform, so there may be some close connections to the wavelet speedup;

• consider using a different transform, such as the Gabor or wavelet transforms, which also pro-
duce local spectral information, but have a fast implementation.
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Unfortunately, we did not have time to investigate these approaches in detail.

3.7 Additional Issues: Stepping Back to Seismic

In the end, this problem is really about seismic data imaging and analysis. It is important to realize
that in all the images so created, there are the important physical aspects that should be properly
modelled. That is, the images come from seismic experiments involving wave propagation; errors
in the image come from errors in our physical model; the geological structures we hope to identify
come from physical processes such as sedimentary deposition, geological faulting, and so on. It is
a bit frustrating to begin the mathematical analysis at the end of the data processing, where we have
an image that came from somewhere, and we want to analyse it. With sufficient mathematical and
computational tools, it makes sense to go back to the original seismic data, and apply our research
techniques to understand how this raw data can be used to reveal more accurately the features we seek
to identify. This is a big task, not easily accomplished in a week-long problem solving workshop. An
interested reader could refer to the work of the POTSI project (potsi.math.ucalgary.ca) or
the CREWES project (www.crewes.org) for further information on research in the mathematics
and geophysics of seismic imaging.
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3.9 Appendix

We include here some of our key MATLAB routines.

The main script for identifying peaks, in 2D and 3D

% PIXEL -- A script program for picking-up peaks in a local spectrum
% created by the S-Transforms and removing them
%
% By Yongwang Ma
% University of Calgary, Alberta, Canada
% May 20, 2005
%
% You may copy, modify and distribute the codes for purpose of
% research.
%

% process and plot in 2D
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load SH02_LocalSpec_117_177.mat;
dimension = 2;
npick = 10; % number of pairs of peaks to remove
[F,nmovie] = pick(LocalSpec,npick,dimension);

% process and plot in 3D

load SH02_LocalSpec_117_177.mat;
dimension = 3;
npick = 10; % number of pairs of peaks to remove
[F,nmovie] = pick(LocalSpec,npick,dimension);

The subtractional subroutine

function [F,nmovie] = pick(SparseLS,npick,dimension)
% pick - finds peaks and creates humps (gaussian-like function in 2D)
% in an image (spectrum) and substracts it from the original image
%
% By Yongwang Ma, May 18, 2005
% The University of Calgary
% Calgary, Alberta, Canada
%
% Input:
% SparseLS = input image, a matrix
% npick = the number of pairs of peaks needs to be found
% dimension = dimension of final images (2- 2D images; 3-3D images)
%
% Output:
% F = a structure consisting of parameters of the frames for a movie
% nmovies = a vector storing the order of the images (figures)

pix_mat = SparseLS;
NF_half = floor(size(pix_mat,1)/2);
NK_half = floor(size(pix_mat,2)/2);
f = [-NF_half:NF_half];
k = [-NK_half:NK_half];
M = size(pix_mat,1);
N = size(pix_mat,2);
sig = 1.50; % parameter controlling the width of Gaussian-like window
figure; % using only one figure, so finally only the most updated image is shown
for ipeak = 1:npick

pmax = max(max(pix_mat));
% find the position of maximum (peak) in the spectrum
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for m = 1:M
for n = 1:N

temp = pix_mat(m,n);
if (temp == pmax)

f0 = m; k0 = n;
end

end
end
% record the coordinates of peaks identified
fpeak(ipeak) = f0;
kpeak(ipeak) = k0;
% transform the coordinates
if (f0 >= NF_half)

f_0 = f0-NF_half;
else

f_0 = -(NF_half-f0);
end
if (k0 >= NK_half)

k_0 = k0-NK_half;
else

k_0 = -(NK_half-k0);
end
f_01 = - f_0;
k_01 = -k_0;
gaus_p = gaus1(f_0,k_0,M,N,k,f,sig);
gaus_p1 = gaus1(f_01,k_01,M,N,k,f,sig);
sub_pmat = pix_mat-gaus_p.*pix_mat;
sub_pmat1 = sub_pmat-gaus_p1.*sub_pmat;

% Plot out results of picking
if (dimension ==2)

%figure;
imagesc(sub_pmat1);

else % (3D)
%figure;
surf(k,f,sub_pmat1);
axis([k(1) k(end) f(1) f(end) 0 3])
shading flat

end
if ipeak==1

boundz=get(gca,’CLim’);
end
set(gca,’CLim’,boundz);

% figure;imagesc(gaus_p);
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% figure;
% amat=gaus_p.*pix_mat;
% plot(amat(f0,:));
% hold;
% plot(pix_mat(f0,:));
% plot(sub_pmat(f0,:));

pix_mat = sub_pmat1;
F(ipeak) = getframe;

end
% create a movie
nmovie = zeros(1,24*npick);
nrmovie = zeros(1,24*npick);
nn1 = 1;
nn2 = 24;
nnr1 = 24*npick;
nnr2 = 24*(npick-1)+1;
for in = 1:npick

nmovie(1,nn1:nn2) = in;
nrmovie(1,nnr1:-1:nnr2) = in;
nn1 = nn1+24;
nn2 = nn2 + 24;
nnr1 = nnr1-24;
nnr2 = nnr2-24;

end
%play the movie forwards
movie(F,nmovie);
% play the movie backwards
% movie(F,nrmovie);

The subroutine to compute the Gaussian-like function

function gaus = gaus1(f0,k0,M,N,k,f,sig)

% gaus1 = subroutine to calculate a gaussian_like function (2D)
%
% f0 = frequency, coordinate at which the centre of gaussian-like function
% located
% k0 = wavenumber, coordinate at which the centre of gaussian-like
% funcition located
% M = total number of frequency samples
% N = totlal number of wavenumber samples
% k = wavenumber coordinates, a row vector
% f = frequency coordinates, a row vector
% sig = a factor, which determines the width of the gaussian-like function
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p11 = zeros(M,N);
p22 = zeros(M,N);
stab = 1.e-8; % stability factor
for m = 1:M

p11(m,:) = (f(m)-f0).ˆ2/Mˆ2+(k-k0).ˆ2/Nˆ2;
p22(m,:) = (f(m)/M)ˆ2 + (k/N).ˆ2;

end
gaus = exp(-2*piˆ2*(p11./(p22+stab))/(sigˆ2));
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Adaptive Statistical Evaluation Tools for
Equity Ranking Models

Problem presented by: Brad Bondy (Genus Capital Management)

Mentors: Tony Ware (University of Calgary), Len Bos (University of Calgary)

Student Participants: Amir Amiraslani (University of Western Ontario), Thomas Holloway (Uni-
versity of Alberta), Hua Li (University of Calgary), Maryam Mizani (University of Victoria), Mah-
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Report prepared by: Tony Ware (aware@ucalgary.ca)

4.1 Introduction

Based in Vancouver, Genus Capital Management (http://www.genuscap.com) is an indepen-
dent investment provider who for over 15 years have been managing assets for private individuals and
families, trusts, foundations and pension funds from across Canada. Their investments span a range of
equity and fixed income, and they manage assets to the value of about $1.3-billion.

Genus offer investment portfolios with a variety of flavours. Each portfolio consists of investments
in stocks from some given ‘universe’. Competitive advantage comes from consistently out-performing
competing funds. One of the approaches that Genus use to achieve competitive advantage is to make
use of auxiliary information about the stocks in the universe in deciding how to adjust their portfolio
month by month. The problem that Genus brought to the IPSW was concerned with how to improve
the way this information is utilised.

4.2 Problem Description

A major challenge in the investment management business is to identify which stocks are likely to
outperform in the future, and which are likely to perform relatively poorly. To this end the strategy
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adopted by Genus is to identify factors (auxiliary information about the stock such as earnings-to-price
ratio or dividend yield) that they believe are associated with future out-performance (i.e. factors that
have predictive ability). The best of these factors are then combined (Genus use a weighted average)
into a model which is used to rank the universe of stocks month-by-month. This ranking is then used
to as the input to a trading strategy, resulting in a modified portfolio.

A critical step in this process is to identify the ‘good’ factors and to determine how heavily each
should be weighted in the final model. Currently Genus use in-sample back-tests in which they sim-
ulate a trading strategy of, for example, selling stocks that drop below the 40th percentile (of the
ranking) and reinvesting the proceeds in stocks in the top 20th percentile. These simulations are run
over a wide range of potential weighting schemes or models, and the model with the most attractive
attributes is identified. Attributes that Genus typically look for in a model include:

• High spread between returns for top and bottom quintiles.

• High information ratio: the ratio of the mean and standard deviation of the excess monthly return
on portfolio versus the index (a portfolio in which all the stocks in the universe are equally-
weighted).

• High hit ratio: the percentage of months in which the portfolio outperforms the index.

The in-sample back-tests are typically run over a 10-year period, excluding the most recent 2 years.
Once a model is identified, out-of-sample tests of the model over the most recent 2 years are run in
order to ensure that the model works out-of-sample.

A major issue for Genus is the inflexibility that results from the 2-year delay for out-of-sample
testing. Factors tend to lose their predictive ability as other market participants incorporate them, and
useful new factors seem to be getting cleaned out faster and faster. With the 2-year delay Genus run
the risk of delaying introduction of a new factor until the market has already cleaned it out. On the
other hand, if the out-of-sample tests are eliminated, they run the risk of over-fitting the data.

The challenge posed for the workshop team was:

1. to recommend adaptive statistical evaluation tools (alternatives to out-of-sample tests) that could
be used to improve confidence in a model and to help decide in a timely fashion if a new factor
should be added to a model, or if an existing factor should be removed;

2. to suggest algorithms that could be used to dynamically update the models with a view to ex-
ploring a dynamic strategy in which model factors and weights are updated monthly based on
the evaluation measures.

4.3 Rising to the Challenge

It was clear from the outset that if the team were to be able to address either of these challenges real-
istically they would need to build tools that would enable them to implement the various components
of Genus’ portfolio management strategy. As the week progressed, it became apparent that a major
stumbling block would be implementation of an efficient procedure for finding a ‘good’ model for
ranking the stocks. This became the focus of the team’s efforts.
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Genus had provided the team with sample data, consisting of just over 12 years worth of monthly
returns on a universe of 60 stocks, along with time series of 34 factors for each of the stocks. Using
these data, the approach was to build software (MATLAB) models for:

• ranking the stocks based on factor information;

• implementing a trading strategy based on a stock ranking and assessing the performance of a
given trading strategy by looking at measures such as hit ratio, information ratio and spread.

The IPSW team implemented a simplified trading strategy of selling the entire portfolio each month,
and using the proceeds to invest equally in the top 20% of stocks as given by the computed ranking.
They also implemented the following measures of portfolio performance: excess return, hit ratio and
information ratio.

4.3.1 Ranking

As noted above, determining an an effective procedure for ranking the stocks is a critical step, but the
design of such a procedure cannot be separated from the other tasks, and in particular the choice of
trading strategy, or performance assessment measures.

A simplified description of the approach taken by Genus is the following. Given a set of factor
values fi,j(t) for the jth factor corresponding to ith stock at time t, and given a linear weighting vector
~w = (wj), they produce a ranking at each time t from the score vector

Si(t;w) :=
∑

j

wjfi,j(t).

A trading strategy, such as buying the top quintile of stocks (those obtaining the top 20% scores) in
equal measure, is assumed (the actual strategy adopted by Genus is rather more complicated than this,
but the details were not available to the IPSW team). The trading strategy takes the weighting vector
~w and the factor values for a given date and produces a set of portfolio weights αi(t). The actual stock
returns Ri(t) can then be used to compute the portfolio return

∑

i

αi(t)Ri(t).

Given such a strategy, the performance of the model can be assessed by measuring the resulting excess
portfolio returns, the information ratio, the hit ratio, and other parameters.

In order to determine a ‘good’ weighting vector ~w, Genus select a training period (typically a ten-
year period of time excluding the most recent two years). They construct a grid of possible weighting
vectors, spanning a subset of the total set of possibilities; for each vector in the grid they produce
rankings for each date in the training period, and (using the trading strategy) compute the correspond-
ing portfolio excess returns, hit ratios, information ratios, etc. They then select the best-performing
weighting vector from this sample and test it against the most recent two-year period before putting it
to use.

The determination of a ranking model is an optimisation problem, with a highly nonlinear objective
function (irrespective of which of the portfolio measures is used). The IPSW team decided that there
could be significant advantages to be gained from exploring alternative approaches to the design of op-
timal ranking algorithms. They considered three distinct techniques: a genetic optimisation algorithm,
a neural network, and a constrained least-squares approach.
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4.3.2 Genetic Optimization

Genetic optimization is an evolutionary search technique (see [2] for more information), in which a
population of abstract representations of candidate solutions (individuals) evolves towards better so-
lutions. The evolution begins with a population of randomly selected individuals and proceeds in
generations. The transition from generation to generation involves evaluating the fitness of the cur-
rent population; individuals are randomly selected for reproduction (with a probability based on their
fitness). Individuals selected for reproduction are randomly selected for mating (each pair produces
two offspring, each of which has some combination of the features of their parents). In addition, each
feature of the offspring can mutate independently with a given probability.

Parameters and Results

Genetic optimisation was used to search for an optimum weight vector ~w for use in a linear ranking
model as described above. The first 113 months of factor and return data were used to construct the
objective function, which took a weighting vector as input and gave the resulting excess returns as out-
put. The populations consisted of 30 individuals, with a 0.01 probability of mutation of the offspring
features, and the algorithm was allowed to evolve for 1000 generations before being terminated. The
resulting weight vector ~w0 is shown in Figure 4.1.

In Figure 4.2, the objective function in the neighbourhood of ~w0 is illustrated. Each of the graphs
in the figure depicts a ‘slice’ of the objective function in the direction of one of the 34 coordinate
directions, centred at ~w0. The non-smooth nature of the objective function can be readily seen, as is
the fact that the genetic algorithm has attained something close to, but not exactly at, a maximum.

4.3.3 Neural Network

An artificial neural network (see [3] for more information) is a computational model for information
processing, represented by a nonlinear function ν that maps a vector of input values ~x to a vector of
output values ~y. The nonlinear function has a particular form given by a network structure together
with weights associated with the network connections. A feed forward network typically has an input
layer, with a node for each element of ~x, an output layer, with a node for each element of ~y, and one or
more hidden layers in between. Each node in a given layer can be connected to each node in the next
layer.

The nodes in the input layer do no processing: they simply pass on the input values to the nodes in
the next layer to which they are connected.

Nodes in the hidden layers receive values from the incoming connections; they process these values
in some way before determining a value to pass on to the nodes in the next layer. A common choice
for computing the output value is to compute a weighted linear combination of the inputs (the weights
being those associated with the incoming connections) and to apply a logistic function, for example
ψ(s) = 1

1+e−s , to the result. Nodes in the output layer compute the elements of the vector ~y by
computing the weighted combination of their inputs. A network of this sort is an example of a multi-
layer perceptron.

Even with just one hidden layer, such a network has a universal approximation property, and can—
with an appropriate choice of connection weights—reproduce arbitrarily closely the action of any
continuous function that maps intervals of real numbers to intervals of real numbers [1].
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Figure 4.1: Factor weights from the genetic algorithm.
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Figure 4.2: Slice view of the 34-dimensional objective function near the chosen maximum for the
genetic optimisation. The first graph shows the limits of the weight values, as well as the value of
the objective function at ~w0. In each of the other graphs the vertical line denotes the value of the
corresponding component of ~w0.
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In order for the network to be of any practical use, the connection weights need to be determined.
A training set of inputs and corresponding outputs is used for this purpose. One popular choice for
adapting the network to the training set is back-propagation, which is an implementation of a gradient-
descent approach to minimising the sum of the squares of the differences between the given outputs
and the outputs from the network.

Parameters

A single-layer perceptron was employed, with the hidden layer having just two nodes. The network
was allowed to have six inputs (six of the the possible thirty-four factors were selected) and one output:
the stock return. The input factors were chosen by determining which of the factors were most highly
correlated with the subsequent months’ returns.

The training data set was selected to be the first 113 periods. Back-propagation, with approximately
1000 iterations, and a learning rate of 0.1 (the distance moved in the direction of the gradient vector at
each iteration), was used to determine the weights.

Once the network was trained it was used to produce forecasted returns on stocks for each of the
remaining 36 months. In each month, the forecast returns were used to rank the stocks, and the trading
strategy of investing in the top 20% used to construct a portfolio for that month.

4.3.4 Constrained Least Squares Optimization

A third approach was also used; as with the genetic optimisation, an optimal weight vector ~w was
sought, with the entries constrained to be positive. Subject to this constraint, the weights were chosen
to minimise the sum of squared discrepancies between the individual stock returns1 and the corre-
sponding score vector for each time t in the first 113 months:

113
∑

t=1

∑

i

(Si(t;w) − Ri(t))
2.

The positive weight vector that minimised this error term was computed using MATLAB’s quadprog
routine, which will compute the minimum of a quadratic function subject to bounds on the input
variables [4]. The resulting weight vector is shown in Figure 4.3.

4.4 Results

Each of the resulting models were applied to the most recent 36 months of data (i.e. not the data used
in determining the models). The performances of their portfolios are illustrated in Figure 4.4, where
the portfolio returns are shown in raw form in the upper graph, along with the performance of an index
portfolio. In the lower graph, the excess returns, relative to the index, are shown. Also, in Figure 4.5,
the values of several other measures of portfolio performance are shown.

1Other objectives could be designed: for example, the ranking of the stock returns could be used.
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Figure 4.3: Factor weights from the constrained least squares optimisation.
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Figure 4.4: Three-year results from the constrained least-squares model, the genetic optimisation
model, and the neural network.
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Figure 4.5: Values of Hit Ratio, Excess Information Ratio, Excess Information Ratio (using portfolio
returns relative to the index), Annual Excess Return and Annual Return for the portfolios generated by
the three different ranking models.
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4.5 Conclusions and Directions for Further Work

The results from the three ranking models shown in the previous section are illustrative only. Each of
the approaches is capable of refinement. However, the results obtained—even without refinement—
compare well with the performance of Genus’ current model. Each of the approaches has the potential
to deliver significant improvements for Genus. Moreover, especially in the case of the constrained
least-squares optimisation, they can be implemented much more quickly. Future work might involve:

• refinement of the neural network and genetic optimisation approaches: each offers a vast array
of possible implementations and the ones presented here can certainly be improved upon;

• experimentation with alternative objective functions for the constrained least squares (quadratic
programming) approach;

• addressing Genus’ original challenge. . . .
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5.1 Introduction

In seismic analysis, our goal is to determine the properties of the subsurface of the earth using seismic
measurements made on the surface of the earth. Seismic measurements are made by sending elastic
waves into the earth (by setting off an artificial explosion at the earth’s surface) and recording the re-
flected elastic waves at the earth’s surface (using geophones on land and hydrophones offshore). This
is illustrated in Figure 5.1. Although this technique has been practiced since the beginning of the twen-
tieth century, the major advances in seismic analysis have occurred during the last fifty years, and were
spurred by the joint development of digital recording and the digital computer. Most of the techniques
that have been developed for the analysis of seismic data can be classified as deterministic. That is, we
develop a deterministic physical model which relates the material properties of the subsurface of the
earth to the physics of the transmitted and reflected seismic waves.

One such deterministic model is called the convolutional model. In the convolutional model, we
assume that the amplitudes of the seismic reflections are directly related to the changes in impedance
(the product of velocity and density) of the various geological formations below the surface, convolved
with a “wavelet” that represents the oscillations caused by the seismic source. By “de-convolving”
and inverting the seismic recording, we can therefore derive both the velocity (which can be either
compressional or shear) and density distributions of the earth’s subsurface. From these velocity and
density values, we can then infer other properties of the subsurface, such as the porosity and fluid
content of the seismic reservoir. This inversion is illustrated in Figure 5.2 for the Blackfoot case study.
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Figure 5.1: Elastic waves are sent into the earth and the reflected signals from the subsurface layers
are recorded on the surface as a function of time.

More recently, researchers have started using a statistical, rather than deterministic, approach to the
determination of the earth’s subsurface and its reservoir parameters. That is one of the main approaches
that we will use here. Thus, instead of assuming an underlying model, we will use multivariate statisti-
cal techniques to determine the earth’s subsurface, using a set of derived “attributes” from the seismic
data. This mathematical approach is described in Section 5.2. In Section 5.3, the previous statistical
approaches to addressing this problem are reviewed and evaluated. Sections 5.4 and 5.5 describe and
discuss two approaches that were developed in the IPSW. Section 5.4 considers a statistical approach,
while Section 5.5 addresses spline approximation. Finally, Section 5.6 provides a general summary
and discussion.

5.2 Mathematical Statement of the Problem

We assume that we have N , M -dimensional multivariate observations which can be written as xj =
(x1j , x2j , . . . , xMj)

T , j = 1, 2, . . . , N , and that we have N scalar training values tj , j = 1, 2, . . . , N .
Our objective is to find some linear or nonlinear scalar function y such that

y(xj) = tj, j = 1, 2, . . . , N. (5.1)

In our case, the multivariate observations are a set of seismic attribute values at a given depth or
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Figure 5.2: Here is the inversion of a seismic line from the survey, showing a channel sand at a time
of 1075 ms and the intersection of well 08-08. The values are in impedance (velocity·density) and we
wish to predict velocity.

time, and the training values are a set of well-log derived reservoir parameter values at the same depth
or time. The well-logging process to obtain sets of high resolution values is illustrated in Figure 5.3.
The physical situation is illustrated in Figure 5.4 for M = 3. Note from Figure 5.4 that each of
the M attributes can be thought of as a N -dimensional vector function ai = (a1i, a2i, . . . , aNi)

T ,
i = 1, 2, . . . ,M . The attributes were chosen from a set of over 50 attributes by multilinear regression.

Our objective function for success is that the answer y is as close to t as possible using a least-
squares criterion. However, since we can make the error as small as we want by adding more model
complexity, the least-squares error is computed using cross-validation. That is, the N training points
are sub-divided intoK separate classes (in our case, theK individual wells), of lengthsN1, N2, . . . , NK .
We then leave out each of the K subsets of points in turn, and use the points in the other K − 1 wells
to predict the removed wells. Next, we compute the least-squared error between the known values and
the predicted values. The final error is the average error for the K individual cases.

5.3 Previous Approaches

The following approaches had already been applied to the solution of the problem:

1. The standard multilinear regression approach.

2. The Nadaraya-Watson estimator of multivariate statistics. This approach was re-discovered in
the context of neural networks and named the generalized regression neural network (GRNN).
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Figure 5.3: The well logging procedure directly obtains high resolution values of the desired parame-
ters.

3. The radial basis function neural network (RBFN).

The multivariate dataset can be written X = AT , where,

X =
[

x1 · · ·xN

]

=







x11 · · · x1N
...

. . .
...

xM1 · · · xMN ,






, A =

[

a1 · · ·aM

]

=







a11 · · · a1M
...

. . .
...

aN1 · · · aNM






. (5.2)

5.3.1 Multilinear Regression

Multilinear regression of the attributes against the training values involves solving for the weights in
the equation,

t = w0a0 + w1a1 + · · · + wMaM = Âw, Â =







1 a11 · · · a1M
...

...
. . .

...
1 aN1 · · · aNM






, w =







w0
...
wM






. (5.3)

The solution is found by generalized least-squares to be

w = (ÂT Â+ λI)−1ÂT
t, (5.4)

where λ is a prewhitening factor used to regularize the solution since ÂT Â may not have a stable
inverse. Also, too much prewhitening can create artifacts.
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Figure 5.4: The basic prediction problem, where we want to predict tj from xj .

5.3.2 GRNN and RBFN

These two neural networks use basis functions. The basis functions are Gaussian functions of distance
in attribute space, which can be written as

φij = φ(dij) = exp

(

−
d2

ij

σ2

)

, dij = |xi − xj| . (5.5)

where σ is a smoothness parameter. The GRNN computes the predicted values “on the fly” from the
training values, using the basis functions defined below,

f(xk) =

∑N
j=1 tjφkj

∑N
j=1 φkj

, k = 1, 2, . . . ,M. (5.6)

In the RBFN, the computation of the predicted values is similar,

f(xk) =
N

∑

j=1

wjφkj, k = 1, 2, . . . ,M. (5.7)
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However, the weights are computed from the training data using the following linear equations,

t(xk) =

N
∑

j=1

wjφkj, k = 1, 2, . . . , N. (5.8)

In both GRNN and RBFN, the key parameter to optimize is the σ value, which controls the width of
the basis functions. For RBFN, we estimate a global value of σ. For GRNN, we optimize σ so that it
varies as a function of the number of parameters in the multivariate observation, or

y(x) =

∑N
i=1 ti exp

[

− (x1−xi1)2

σ2

1

− · · · − (xM−xiM )2

σ2

M

]

∑N
i=1 exp

[

− (x1−xi1)2

σ2

1

− · · · − (xM−xiM )2

σ2

M

] . (5.9)

A comparison of GRNN and RBFN is as follows. The GRNN has a simpler structure and computes
its weights directly from the training data without having to pre-compute these weights. The RBFN
pre-computes the weights by solving a N ×N matrix, where N is the number of training points. The
two methods give similar results for large numbers of training points, but RBFN is superior when the
number of points is small.

5.3.3 Results

Amongst the three methods, GRNN gives the best results having the highest average correlation coef-
ficient between the prediction and the validation target of 12 wells, 0.633. Figure 5.5 shows the best
result obtained by GRNN, with the correlation coefficient 0.74. It shows the target (red) and predicted
(blue) values of velocity versus time of well 11. The worst case has the correlation coefficient 0.47,
which is obtained from well 5, and it is shown in Figure 5.6.

5.3.4 Challenges

Thus we have the following challenges:

1. Can we find other methods that may be more accurate?

2. Can we understand the nature and limitations of the methods from our results?

3. Can we devise other more local estimation procedures?

To address these challenges, we have tried the generalized additive model method and the spline
method. In next two sections, we will describe the two methods and show our results. Finally we will
give the summary of our work in the last section.

5.4 Generalized Additive Model

5.4.1 Introduction of Generalized Additive Model

The Generalized Additive Model (GAM), a generalization of the linear regression model, can be
viewed as the combination of the additive model with the generalized linear model. Suppose that
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Figure 5.5: The true (red) and predicted (blue) values of velocity Y vs. time (Well 11–the best case).

Y is a dependent random variable and X1, X2, . . . , Xp is a set of independent random variables. The
standard linear regression model assumes the expected value of Y has a linear form,

E(Y ) = α +

p
∑

j=1

βjXj. (5.10)

Therefore the linear regression model assumes the effect of Xj has a linear form βjXj as well. Given a
sample of values for Y and X1, X2, . . . , Xp, the parameters βj are often estimated by the least squares
method.

The additive model relaxes the linear form βjXj and assumes the effect of Xj has a general form
fj(Xj), where fj(·) is an unspecified (nonparametric) function. These functions are not given a para-
metric form but instead are estimated in a nonparametric fashion. However, the additive model still
assumes the expected value of Y has an additive form,

E(Y ) = α+

p
∑

j=1

fj(Xj). (5.11)

To extend the additive model to a wide range of distribution families, Hastie and Tibshirani [2] pro-
posed the generalized additive model. This model assumes that the expected value of Y depends on
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Figure 5.6: The true (red) and predicted (blue) values of velocity Y vs. time (Well 5–the worst case).

additive independent random variables Xj through a nonlinear link function g(·). GAM has the form,

g(E(Y )) = α+

p
∑

j=1

fj(Xj). (5.12)

5.4.2 Advantages of GAM

GAM has two main advantages. First, GAM is a kind of nonparametric regression and it relaxes the
usual assumption of linearity, enabling users to reveal the hidden structure in the relationship between
the independent variables and the dependent variable. Thus, GAM is more flexible than linear models.
GAM includes the linear models as a special case, when g is the identity. Secondly, GAM allows for
a link between

∑p
j=1 fj(Xj) and the expected value of Y . This amounts to allowing for an alternative

distribution for Y besides the normal distribution. Actually it permits the dependent random variable
Y to be any member of the exponential family of distributions.

5.4.3 Fitting GAM

In S-plus, the GAM is fit by the local scoring algorithm, which is based on the backfitting algorithm.
The backfitting algorithm is a general algorithm that can estimate the smoothing terms fj(Xj) in the
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additive model using any nonparametric smoothers. The GAM procedure in S-plus has two primary
smoothers: splines and Loess (Locally weighted regression). The backfitting algorithm is iterative,
starting with initial functions fj(Xj)

0, and in each iteration, fitting the fj(Xj) to its partial residuals.
Iteration proceeds until fj(Xj) does not change. The local scoring algorithm is used to estimate the
smoothing terms fj(Xj) in the GAM. It is also an iterative algorithm and starts with initial estimates
of fj(Xj). During each iteration, an adjusted dependent variable and a set weight are computed, and
fj(Xj) are estimated using a weighted backfitting algorithm. The scoring algorithm stops when the
deviance of the estimates ceases to decrease.

5.4.4 Results

The predicted values of Y are computed using a cross-validation procedure. That is, 855 training
points are divided into 12 wells. At each time, we leave out the data points of a given well, and use
the points in the other 11 wells to predict of the removed well. Then we calculate the correlation
coefficient of the true values and the predicted values in each well which are used to determine the
quality of prediction, and finally obtain the average correlation coefficient for 12 wells.

Figure 5.7 shows the true and predicted values of velocity Y versus time of well 6. The correlation
coefficient of this well is 0.722, which is the best case among the 12 wells. From this figure, we can
see that the predicted values have a similar trend as do the true values. The worst case, well 5 with
correlation coefficient 0.364, is shown in Figure 5.8. The true and predicted values of the velocity Y
of this well have no obvious correlation.

The average correlation coefficient between the prediction and the validation target of 12 wells
is 0.5860 computed by using GAM. Compared to the 0.5857 obtained by the linear regression, we
couldn’t find an obvious improvement. Moreover, since the purpose of GAM is to maximize the
quality of prediction of the dependent variable Y from various distributions, the correlation coefficients
of all the wells are expected to be improved by using GAM instead of the linear model. However,
we find there are four wells whose correlation coefficients decrease. The reason might be that only
one distribution, Gaussian, was considered due to limited time. The smoother methods could also
influence the results as well. We chose the spline smoother. One might try different smoothers in
S-plus or various combinations of parametric linear functions and non-parametric smooth functions to
get better results. Another insight might be provided by the scatter plots in Figure 5.9, which capture
the information in the covariance matrix. Only the first attribute (impedance) displayed any significant
correlation.

5.5 The Spline Method

5.5.1 Introduction of the Spline Method

Approximation of the target is computed using a function from a certain class. In the case of the spline
method, the class of functions consists of the set of all linear combinations of centrally symmetric
functions with centres at the training points. That is, f(x) is chosen of the form,

f(x) =
n

∑

i=1

wiϕ(|x− xi|). (5.13)
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Figure 5.7: The true (red) and predicted (blue) values of velocity Y vs. time (Well 6 –the best case).

where ϕ(z) is a one-variable function which can be experimentally chosen for optimized results, and
xi are the training points. The coefficients wi are then selected to make the equality f(xi) = ti
hold exactly at the training points. This gives rise to the following set of n linear constraints on the
coefficients wi,

ti = f(xi) =
n

∑

j=1

wiϕ(|xi − xj|), i = 1, 2, . . . n. (5.14)

This system of equations has a unique solution that can be easily found as long as the matrix,

M =











ϕ(|x1 − x1|) ϕ(|x2 − x1|) · · · ϕ(|xn − x1|)
ϕ(|x1 − x2|) ϕ(|x2 − x2|) · · · ϕ(|xn − x2|)

...
...

. . .
...

ϕ(|x1 − xn|) ϕ(|x2 − xn|) · · · ϕ(|xn − xn|)











, (5.15)

is invertible and well-conditioned. Solving the system for wi gives us the predicting function f(x) we
are looking for.
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Figure 5.8: The true (red) and predicted (blue) values of velocity Y vs. time (Well 5–the worst case).

5.5.2 Improvement of the Spline Method

The spline method generally works better where there is no linear “drift” in the target function. We
improve on the spline method by “taking out” the multi-linear regression component before applying
the spline method. Given the input we first compute a multi-linear regression L(x). We then use
the spline method on the training set of pairs (xi, ti − L(xi)) to obtain a prediction function g(x) as
described above. We then output the prediction function for the original input: f(x) = g(x) + L(x).
Note that f(x) fits perfectly on the training set, f(xi) = ti − L(xi) + L(xi) = ti. Figure 5.10 is the
schematic diagram of this process described here.

5.5.3 Results and Analysis

We have experimented with functions ϕ(z) of the form ϕ(z) = zα + β. The best estimates for the
given sample are achieved with,

ϕ(x) = x0.15. (5.16)

The average correlation coefficient between the prediction and the validation target for 12 wells is
0.631. The average error in the l2 norm is 0.76σ and the average error in the l1 norm is 0.57σ, where σ
is the sample standard deviation of true target values. Sample performance of the method is illustrated
on Figure 5.11 for well 6 (best case) and Figure 5.12 for well 9 (worst case).
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Figure 5.9: Scatter plots of the target versus the attributes. Attribute 1 is the impedance, and it is the
only attribute that displays a significant correlation.

The correlations for well 6 and well 9 are 0.773 and 0.489, respectively. Visually, one can see that
the prediction quality for well 6 is much better than that for well 9. The main place where the method
fails is in predicting spikes. In particular, its performance is worse on well 9 because the target data
for this well contains several sharp spikes which the method fails to predict.

5.6 Discussion

All of the methods have limited resolution. They cannot capture the rapid variations occurring on
the high resolution scale of the well logging data. The supplemental information contained in the
attributes derives from the (relatively) low resolution seismic survey data, thus the statistical attempt
to combine the two sets of information into a single predictor will ultimately have a resolution limit as
well. Figure 5.13 provides a typical illustration of this limitation.

Throughout the calculations, the number of attributes taken varied from 4 to 7, with the first at-
tribute (impedance) common to all cases. There was relatively little sensitivity to the number of at-
tributes, however, since only the first attribute exhibited any significant correlation (see Figure 5.9),
this result is not surprising.

An alternative approach is to consider local estimation; that is to estimate properties in one layer
based solely on the deterministic information from the log wells in that layer. This idea is illustrated in
Figure 5.14. This is particularly appropriate for localized parameter estimation. Figure 5.15 illustrates
a spline fit in the chosen depth plane. Figure 5.16 illustrates the predicted values in the chosen well
based on the local spline estimation compared with the true values. This fit appears to be consistent
with the best of the earlier spline fit results.

In conclusion, the spline method seemed to offer the best results. Given the limited duration of the
IPSW, however, this is a tentative conclusion. There are other statistical approaches beside the GAM,
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Figure 5.10: Improving the Spline Method.

and they should probably be considered. There is also the question of to what degree these examples
were dominated by the first attribute.
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Figure 5.11: The true (red) and predicted (blue) values of velocity Y vs. time (Well 6–the best case).

Figure 5.12: The true (red) and predicted (blue) values of velocity Y vs. time (Well 9–the worst case).
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Figure 5.13: The true (red) and predicted (blue) values of the velocity Y vs. time for a typical example
in the study. Notice that the rapidly changing features are very hard to predict correctly.
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Figure 5.14: The location of the 12 wells in a particular depth plane, with the blue well signifying the
well to be predicted.

Figure 5.15: A spline fit in a given depth plane.
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Figure 5.16: The true (red) and the predicted (blue) values for the velocity Y vs. time for the local
depth spline estimator.
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