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FOREWORD BY THE PIMS DIRECTOR

The annual PIMS Graduate Industrial Mathematics Modelling Camp (GIMMC) is held in one of the PIMS
universities as part of the PIMS industrial programme. It is part of PIMS’ commitment to providing training for
young mathematical scientists who are either pursing careers in academia or in industry.

The goal of the GIMMC is to provide experience in the use of mathematical modelling as a problem-solving tool
for graduate students in mathematics, applied mathematics, statistics and computer science. In addition, it helps
prepare the graduate students for the Industrial Problem Solving Workshop which takes place the week after
GIMMC.

At the workshop, students work together in teams under the supervision of invited mentors. Each mentor poses
a problem arising from an industrial or engineering application and guides his or her team of graduate students
through a modelling phase to a resolution.

The Eighth GIMMC was held May 7–11, 2005, at the University of Lethbridge in Alberta. This year it was
co-sponsored by Informatics Circle of Research Excellence (iCORE), Alberta Innovation and Science, and the
University of Lethbridge.

There were four problems posed, and a total of thirty-four students in attendance. The students came from across
North America with seven from the United States.

My sincere appreciation and gratitude goes to all the people involved in this workshop. In particular I would like
to thank the organizers (Elena Braverman, Hadi Kharaghani) and the mentors (C. Sean Bohun, Chris Bose, Lou
Fishman, Daya Gaur).

I look forward to the 2006 GIMMC which will be held at Simon Fraser University.

Dr. Ivar Ekeland, Director
Pacific Institute for the Mathematical Sciences
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EDITOR’S PREFACE

From May 7 through May 11, 2005, thirty-four graduate students and four mentors gathered at the University
of Lethbridge for the Eighth Annual Graduate Industrial Mathematics Modelling Camp (GIMMC). The students
came from all across Canada (from Newfoundland to Victoria) and the United States (from Massachusetts to
California).

Both students and mentors mentioned that the University of Lethbridge was an excellent venue for the event.
Most of the participants arrived on Saturday, May 7, at the Calgary airport, and proceeded by bus to Leth-

bridge. The next day (Sunday, May 8) began with presentations of problems by mentors. Shortly after this,
students broke into four teams to tackle the problems. For three and a half days students, guided by mentors,
worked on problems, until the final presentations on May 11. After that students went to Calgary for the MITACS
meeting (May 11-14). Some of the groups mentioned that they continued to work on the problem during the MI-
TACS meeting. Some time after the workshop, proceedings papers were submitted for review, and these papers
form the rest of this document.

A workshop could not be successful without the combined effort of many. First, we would like to thank
mentors:

• Sean Bohun (Pennsylvania State University)

• Chris Bose (University of Victoria)

• Lou Fishman (MDF International)

• Daya Gaur (University of Lethbridge)

Feedback from students indicated that the mentors were greatly appreciated for their efforts. For example:

“Our mentor’s passion in research and treating us as fellow researchers were so inspiring.”

“The topic of the our GIMMC problem was awesome.”

“The problems were excellent, and the facilities were great as well.”

We would also like to express our appreciation to Wolf Holzmann, Jim Liu and Amir Akbary (University
of Lethbridge) for contributing to the organization of the conference. They were also involved in editing pro-
ceedings, as was Bill Sands (University of Calgary). The Administrative Assistant, Zoia Schacher (University of
Lethbridge), and the PIMS Administrative Assistant, Marian Miles (University of Calgary), were invaluable. We
also acknowledge PIMS Website Manager, Kelly Choo, for his support with the web site, and PIMS Publications
and Communications Manager, Heather Jenkins, for her assistance with the editorial process.

Finally, we thank the local organizer Hadi Kharaghani (University of Lethbridge) for his efforts that led to a
very successful modelling camp.

Elena Braverman (University of Calgary)
and Daya Gaur (University of Lethbridge)

October 2005
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Chapter 1

Modelling a Stirling Engine

Participants: C. Sean Bohun (Mentor, Penn State University), Parisa Jamali (University of Western Ontario),
Massih Khorvash (University of Lethbridge), Mahyar Mohajer (University of Calgary), Comron Nouri (Univer-
sity of Western Ontario), James Odegaard (University of Western Ontario), Peter Smith (Memorial University),
Naveen Vaidya (York University)

PROBLEM STATEMENT: A Stirling engine is an externally heated engine developed in the 1800’s as a safe
alternative to the steam engine. The boilers of steam engines were known to explode due to a combination of the
high pressure of the steam and the use of materials of insufficient strength in their construction.

The engine functions by repeatedly heating and cooling a sealed amount of gas. Since the gas is sealed,
there are no intake or exhaust valves as one would find with other piston engines. In addition, the theoretical
efficiency of an ideal Stirling engine cycle exceeds that of a steam engine. In fact, it is has the same efficiency as
a Carnot heat engine for the same input and output temperatures. The sealed gas operates at a reduced pressure,
consequently allowing the cylinders to be much less robust than their internal combustion counterparts. However,
due to the size of the heat exchangers, the engines tend to be quite large. This is especially true for Stirling engines
that run on a small temperature differential.

Stirling engines are also capable of working in reverse in that motion applied to the shaft will set up a tem-
perature differential across the tube containing the sealed gas. Because of this effect, one of the modern uses of
Stirling engines is as a refrigerator.

Traditionally the analysis of a Stirling engine begins by assuming that the hot and cold sides of the engine
remain at a fixed temperature throughout the engine cycle. This is tantamount to assuming that the heat exchangers
and regenerator are perfectly effective at maintaining the spatial temperature distribution within the engine. Rather
than determining the heat transferred, work done, and efficiency of the engine, our primary goal is to determine
the equation of motion describing the flywheel of the engine.

Our second goal is to attempt to understand the gas flow inside the sealed chamber. Again, we assume an ideal
gas where the mass flow is driven by the temperature distribution along the sealed tube.

In realistic machines the working spaces are more accurately approximated with a adiabatic assumption rather
than an isothermal assumption. This means that no heat (thermal energy) is transferred by the enclosed gas which
is the opposite extreme of the isothermal case where heat transfer is maximized. Consequently, the next problem
to be considered would be to use an adiabatic assumption allowing one to make insights into the design of the
regenerator and the effectiveness of using various gases.
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2 CHAPTER 1. MODELLING A STIRLING ENGINE

1.1 Introduction

In this report we begin modelling a Stirling engine in the α-configuration using a Lagrangian formalism to obtain
the equation of motion for the system. By considering a one dimensional gas dynamics model for the trapped gas,
we find that at the zeroth order of the gas dynamics equations, the pressure is uniform within the gas chamber.
The gas dynamics model also describes a clear hierarchy of the higher order effects.

The following sections of this paper proceeds as follows: In Section 1.2 we derive the equations of motion for
a particular Stirling engine with a w-linkage and illustrate the dynamical behaviour of the model. In Section 1.3
we use the theory of gas dynamics to derive a simplified set of equations of motion for the trapped gas. At
zeroth order the gas dynamics model predicts that the pressure is uniform within the chamber, consistent with our
Lagrangian model. In the final section of the paper we propose some future directions for research.

1.2 Equations of Motion

We consider an α-configuration Stirling engine as shown in Figure 1.1. The x-axis of the coordinate system is
parallel to the length of the cylinder. The quantities x1(t) and x2(t) represent the positions from the inner side of
each piston to the y-axis respectively. Each piston is connected to the corresponding triangle formed by rigid rods
of various lengths. The applied temperature is assumed to be piecewise constant along the length of the chamber
of the form

T (x) =

{

T1, x1 ≤ x < 0
T2, 0 ≤ x ≤ x2.

The grey region separating the two sides of the chamber indicated in Figure 1.1 is considered ideal in that it
maintains the temperature differential while not impeding the flow of the gas from one side to the other.

By assuming an ideal gas, an expression for the pressure is simply a result of the fact that the amount of gas
in the chamber is constant. If A denotes the cross sectional area of the chamber and n the number of moles of
contained gas then

P (x1, x2) =
nRT1T2

A(T1x2 − T2x1)
(1.1)

where R is an appropriate ideal gas constant (R = 8.314 J/K/mol in MKS units).
The motion is constrained by the linkage and to derive expressions for the constraints we notice that

−−→
OP = 〈r sinx3, h− r cosx3〉,

−−→
OQ = 〈d− a cosϕ2,−a sinϕ2〉, (1.2)

−−→
OR = 〈−d+ a cosϕ1,−a sinϕ1〉. (1.3)

Algebraic constraints due to the linkage result from the condition that |
−→
PR|2 = |

−−→
PQ|2 = l2 yielding

g1(x1, x3) = (d− a cosϕ1 + r sinx3)
2 + (h+ a sinϕ1 − r cosx3)

2 − l2 = 0 (1.4a)

and
g2(x2, x3) = (−d+ a cosϕ2 + r sinx3)

2 + (h+ a sinϕ2 − r cosx3)
2 − l2 = 0 (1.4b)

where

ϕ1 = α− cos−1

(

d− ζ + x1

b

)

, ϕ2 = α− cos−1

(

d− ζ − x2

b

)

. (1.4c)

To obtain the equation of motion we use the Lagrange equation

d

dt

(

∂K

∂ẋ3

)

−
∂K

∂x3
= Qr (1.5)

whereK is the kinetic energy of the system andQ consists of the forces acting on the flywheel due to the pressure
in the chamber and the friction of the pistons.
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Figure 1.1: An ideal α-configuration Stirling engine.

The kinetic energy of the system is given by

K =
mp

2

(

ẋ2
1 + ẋ2

2

)

+
I

2
ẋ2

3

where mp is mass of the piston assemblies and I = mdr
2/2 is the moment of inertia of the solid cylindrical

flywheel of mass mf and radius r. As a result of the expressions (1.4) the dynamics of the drive wheel are
connected to the motion of the pistons through

∂g1
∂x1

ẋ1 +
∂g1
∂x3

ẋ3 = 0,
∂g2
∂x2

ẋ2 +
∂g2
∂x3

ẋ3 = 0. (1.6)

Using these relations, the kinetic energy becomes

K =

[

mp

2

(

a2
13

a2
11

+
a2
23

a2
22

)

+
I

2

]

ẋ2
3 (1.7)

with aij = ∂gi/∂xj .
There are two separate components for Q in equation (1.5). These include the forces due to the pistons acting

tangentially to the flywheel and the frictional forces of the pistons. The former of these can be computed by
determining the torque applied by each piston and then resolving the forces acting along

−−→
QP and

−→
RP in the

direction tangent to the flywheel. In detail, solving for the force along
−−→
QP

−−→
S2Q× ~FQP =

|~FQP |

l

−−→
S2Q×

−−→
QP = A(P − P0)H(−k̂)

where P0 is the ambient pressure outside the chamber and P is given by (1.1). Using (1.2),

|~FQP | =
A(P − P0)Hl/a

(h− r cosx3) cosϕ2 + (d− r sinx3) sinϕ2
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Linkage arms Pistons/flywheel Gas
a 3.61 cm h 2.86 cm R 8.314 J/K/mol
b 7.72 cm r 1.00 cm n 1.20 mmol
α 143° mp 200 g A 3.14 cm2

l 5.00 cm mf 200 g P0 101325Pa
d 6.39 cm ζ 4.67 cm T1 293.15K
H 7.61 cm γ 1000g/s T2 393.15K

Table 1.1: Values of the parameters used for the simulation.

and resolving in a direction tangential to the flywheel one obtains

F2 = comp
T̂
~FQP = |~FQP |

−−→
QP

l
· 〈cosx3, sinx3〉

= A(P − P0)
H

a

(h+ a sinϕ2) sinx3 − (d− a cosϕ2) cosx3

(h− r cosx3) cosϕ2 + (d− r sinx3) sinϕ2
. (1.8)

A similar argument for the force due to the piston on the left yields

F1 = A(P − P0)
H

a

(h+ a sinϕ1) sinx3 + (d− a cosϕ1) cosx3

(h− r cosx3) cosϕ1 + (d+ r sinx3) sinϕ1
. (1.9)

Combining these results together and using (1.5) gives the equation of motion

A(x3)ẍ3 +B(x3)ẋ
2
3 + C(x3)ẋ3 = D(x3) (1.10)

where
A(x3) = mp

(

Γ2
1 + Γ2

2

)

+ I,

B(x3) = mp

(

Γ1
∂Γ1

∂x3
+ Γ2

∂Γ2

∂x3
− 2Γ2

1

∂Γ1

∂x1
− 2Γ2

2

∂Γ2

∂x2

)

,

C(x3) = −γ(Γ1 + Γ2)r,

D(x3) = (F1 + F2)r































(1.11a)

and

Γ1 =
a13

a11
=
[

b2 + (d− ζ + x1)
2
]1/2 r

a

×
(h+ a sinϕ1) sinx3 + (d− a cosϕ1) cosx3

(h− r cosx3) cosϕ1 + (d+ r sinx3) sinϕ1
,

(1.11b)

Γ2 =
a23

a22
= −

[

b2 + (d− ζ − x2)
2
]1/2 r

a

×
(h+ a sinϕ2) sinx3 − (d− a cosϕ2) cosx3

(h− r cosx3) cosϕ2 + (d− r sinx3) sinϕ2
.

(1.11c)

For any position x3, the values of x1 and x2 are determined by (1.4). These values in turn define the pressure
through equation (1.1) and as a result the values of F1 and F2 with (1.9) and (1.8) respectively.

Figure 1.2 illustrates the dependence of the coefficients in expression (1.10) with respect to x3 using the data in
Table 1.1. From these curves we see that this linkage has four equilibrium points {(x3, ẋ3)} = (0, 0), (0, π), (0,±ξ)
with ξ ' π/3. By studying the phase portrait one can completely characterize the possible motion. Note that only
D(x3) and hence the position of the equilibrium points can be controlled by modifying the pressure and temper-
ature of the trapped gas. To the left of Figure 1.3 is the typical time dependence of the angular coordinate x3. In
the illustrated case, the flywheel starts at rest at an angle of x3(0) = 5° and the subsequent motion consists of
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Figure 1.2: Angular dependence of the coefficients in expression (1.11a).

the flywheel oscillating until enough angular momentum is built up to complete one rotation. After this point the
rotation becomes nearly uniform. The pressure of the trapped gas throughout one cycle is displayed to the right
in Figure 1.3. Numerical experimentation suggests that the square of the angular frequency is proportional to the
characteristic size of the ratio maxx3 |D/A|. This relationship could be verified with an application of classical
Floquet theory. See [4] for a modern treatment.

To extend our understanding of this model we next consider the motion of the trapped gas by developing a set
of gas dynamics equations.

1.3 Gas Dynamics

Inside the chamber we consider a gas with macroscopic values of density, velocity, and energy of ρ, v, and ε
respectively. These quantities are allowed to evolve both in time and with respect to position within the chamber.

If we assume that the gas evolves according to a Boltzmann equation with an underlying probability density
function f(x, v, t) then the macroscopic quantities can be obtained by computing the moments

ρ =

∫

fdv, ρu =

∫

vfdv, ρε =
1

2

∫

|u− v|2fdv. (1.12)

We further note that the pressure P is given by

P =
1

3

∫

|u− v|2fdv =
2

3
ρε.

Under suitable regularity assumptions, these quantities can be shown to satisfy the system of partial differential
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Figure 1.3: To the left is the time dependence of the rotation angle x3 and to the right is the corresponding internal
pressure of the trapped gas throughout one cycle.

equations [2]

ρt + (ρu)x = 0, (1.13a)

(ρui)t +

3
∑

j=1

(ρuiuj + pij)xj = 0, (1.13b)

(

1

2
ρ|u|2 + ρε

)

t

+

3
∑

j=1

[

ρuj

(

1

2
|u|2 + ε

)

+

3
∑

l=1

ulpjl + qj

]

xj

= 0 (1.13c)

where

pij =

∫

(ui − vi)(uj − vj)fdv, qi =
1

2

∫

(ui − vi)|u− v|
2fdv. (1.13d)

To determine the stress tensor pij and the heat flux qi we require an explicit determination of the probability
distribution f . At this point we assume that the gas chamber has an externally imposed temperature distribution
which is radially independent. Furthermore, at any position within the chamber we assume that the gas behaves
according to a local Maxwellian consistent with the temperature at that position. To this end we suppose that

f(x, v, t) = C1e
−C2(v−v0)

2
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where C1 and C2 are functions of the position x. Using the definitions (1.12) we find that

ρ = C1

(

π

C2

)3/2

, ρu = v0x

(

π

C2

)3/2

, v0y = 0, v0z = 0, (1.14a)

and

C2 =
3

4

(

ε+
1

2
u2

)−1

'
3

4ε
. (1.14b)

Computing pij and qi according to (1.13d) we obtain the simplified set of expressions

ρt + α(ρu)x = 0,

(ρu)t +

(

ρu2 −
2

3
ρε

)

x

= 0,

(

1

2
ρu2 + ρε

)

t

+

(

2

3
ρεu−

3

2
ρu3

)

x

= 0































(1.15)

for the enclosed gas.

1.3.1 Dimensional Analysis

We non-dimensionalize the model equations by defining

t̂ = t/τ, x̂ = x/L, ρ̂ = ρ/R, û = u/V, ε̂ = ε/E

where τ = 1/3 s, L = 10 cm, V = 1 cm/s, andE = 1000 J/kg are characteristic quantities for the process we are
investigating. Transforming to the non-dimensional quantities and removing the hats we find

ρt + α(ρu)x = 0,

(ρε)x − α(ρu)t − αβ(ρu2)x = 0,

(ρε)t +
2

3
α(ρεu)x +

1

3
αβ(ρu2)t − α

2β(ρu3)x = 0,



















(1.16)

where

α =
V τ

L
' 0.03, β =

3V L

2Eτ
' 5× 10−6

are small parameters reflecting the drift speed and kinetic energy of the gas.

1.3.2 Zeroth Order

Keeping only the zeroth order terms of (1.16) one obtains the system

ρt = 0, (ρε)x = 0, (ρε)t = 0 (1.17)

with a solution

ε = ε(x), ρ = ρ(x), ρε = const. (1.18)

This is consistent with the static situation where the externally imposed temperature profile determines the energy
and the density changes in such a way to ensure that the internal chamber pressure remains constant.
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1.3.3 First Order Corrections

At first order, the motion of the gas begins to play a role in the dynamics. In this case we consider the system

ρt + α(ρu)x = 0,

(ρε)x − α(ρu)t = 0,

(ρε)t + 2
3α(ρεu)x = 0















(1.19)

with the added boundary condition that the velocity of the gas at the piston heads must be that of the pistons
themselves.

A preliminary analysis of these first order equations indicates that the density and velocity of the gas remained
invariant but the energy of the gas slowly increased in the regeneration region (near x = 0) while decreasing at
the face of the piston in the hot side of the chamber.

1.4 Conclusions and Future Work

An equation of motion describing the flywheel was derived and for the chosen simulation parameters, the rotation
became nearly uniform after a few complete rotations.

Using a dimensional analysis technique, the relationships defining the behaviour of the trapped gas (1.16)
were found to cascade into a natural hierarchy of importance. To leading order one recovers a spatially uniform
pressure that is constant in time. A significant omission in the description of the enclosed gas are the moving
boundary conditions at the ends of the gas tube. The next step in this work should be an analysis of (1.19) with
an appropriate set of boundary conditions.

Other considerations of the current work include simplifying the linkage and realistically modelling the regen-
eration region as an extensible body with well defined thermal properties. As mentioned in the problem statement,
the consideration of an adiabatic rather than isothermal assumption of the working spaces would allow insights to
be made into the design of the regeneration region and the effectiveness of using various gases.
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Chapter 2

A Dynamical Model of Drill Efficiency

Participants: Chris Bose (Mentor, University of Victoria), Mahmoud Akelbek (University of Regina), Amir
Amiraslani (University of Western Ontario), Robin Clysdale (University of Calgary), Hui Huang (University of
British Columbia), Xiaoping Liu (University of Regina), Nargol Rezvani (University of Western Ontario), Sarah
Williams (University of California, Davis)

PROBLEM STATEMENT: The method used to bore holes in rock or other hard, brittle material is fundamentally
different from that used to drill in softer, more malleable materials (like wood or metal). One particularly simple
form of the rock drill is called the tri-cone drill head, wherein three conical ”gears” equipped with hardened
chipping points are mounted in a single housing. Drilling is effected by the contact of the teeth of these gears
along the bottom of the bore hole as the drill head is rotated – each time a tooth meets the rock, a piece of rock
is broken off. The efficiency of this form of drilling depends on quite a number of factors including the applied
force (the weight of the drill and rotating machinery), the geometry of the drill head and chipping points, and,
what we are most interested in, the angular speed of rotation of the drill. The action of the drillhead has at least
three qualitatively different modes depending on this angular speed.

For low rotational speeds there is essentially no drilling action as the gears ’walk’ along the rock. At mod-
erate angular speeds there is very inefficient drilling as the motion of the rollers enters a ’periodic’ mode. For
sufficiently high angular speeds, the gears contact the rock in a ’fully chaotic’ mode and effective drilling be-
gins. Finally, as the angular speed is further increased, the drilling efficiency (advance per revolution) first peaks,
then drops off to approximately 60% of maximum efficiency. In the field, operators try to identify this point of
maximum efficiency and run the drillhead near this speed.

In this workshop our goal was to produce a simple model of the tri-cone drill which captures the above
qualitative features. In order to deal with the ’chaotic’ mode of operation, we construct our model as a discrete-
time dynamical system. While there is no equilibrium configuration in the usual sense for our discrete time
system, there is an invariant measure which describes the asymptotic behaviour of the drillhead after transients
have decayed. Once the invariant measure is known, the asymptotics may be computed (or estimated) and the
qualitative features noted above may be derived.

11
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2.1 The Drilling Model

We start by making a rather brutal geometric simplification of our drillhead compared to what was described in the
Problem Statement. In our model we ignore multiple gears (and hence any possible gear-to-gear interaction); we
assume regular gears (reasonable, but not always the case in modern applications); and we assume a flat bottomed
bore hole. Finally we replace the circular geometry of the bore hole with a linear geometry. We are left with a
model of the rock drill consisting of one regular gear in two dimensions, moving horizontally along a straight line
(x-axis). We assume the upward vertical direction is the positive z-axis. The gear has N teeth and maximum
radius r meters. We denote the velocity in the x-direction by c, and time (in seconds) by t. We assume that c is
held constant by the drill operator, so that

c =
x

t
, (2.1)

or, equivalently,
x = t · c. (2.2)

It is a simple exercise to verify that the distance T between consecutive ’teeth’ on the gear is given by

T = 2r sin
( π

N

)

, (2.3)

Therefore, one rotation of the drill head in the bore hole of radius B corresponds to an increase by 2πB in the
value of x and to a passing of teeth on the gear

πB

r sin
(

π
N

) (2.4)

We assume that the origin x = 0 corresponds to the gear sitting with two consecutive teeth contacting the
bottom of the bore hole. Then x = 0.05T corresponds to one tooth pointing straight down and x = T returns the
gear to the position of two contacting teeth. Thus the configuration of the gear with respect to the bottom of the
bore hole is periodic of period T . This is illustrated in Figure 2.1 for the simple case of N = 5 and T = 1.

x=0 x=0.5 x=1

Figure 2.1: Drill configuration examples.

2.1.1 The Rolling Mode

The centre of a rolling drill traces the curve

b(x) =
√

r2 − (x− T/2)2, (2.5)

where r is the maximum radius of the drill; that is, partial circles are traced as the drill rocks from one tooth to
the next. We call this curve the base curve for the gear. You can clearly see the base curve in Figure 2.2.

Since the horizontal speed of the gear is held at the constant value c, using equation (2.2), the vertical acceler-
ation of the gear moving along the base curve is −c2b′′(x), where the primes indicate differentiation with respect
to the spatial variable x. We conclude that in order to maintain a rolling mode for the gear we must have
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Figure 2.2: Path traced by the centre of a rolling drill (b(x)).

g ≥
c2

r

(

r

b(x)

)3

(2.6)

for all x ∈ [0, T ], where g is the gravitational constant. Since the maximum on the right hand side is obtained
when x = 0 (or x = T ) the precise condition for the rolling mode is easily derived:

(

1−

(

T

2r

)2
)3/2

≥
c2

gr
. (2.7)

The quantity ω2 = c2
gr is called Froude’s number for the system. Note that ω ∼ c for a gear of fixed radius.

2.1.2 The Bouncing Mode

From expression (2.6) we can also derive the critical value of c for the fully chaotic mode, that is, when

g ≤
c2

r

(

r

b(x)

)3

for all x ∈ [0, T ]. Under this condition, whenever the gear makes contact with the rock it will immediately
’bounce’ upward away from the rock due to the vertical acceleration imposed by the rocking of the gear over the

contacting tooth. Since the minimum value of the right hand side is given when x = T
2 , we record the bouncing

condition as

ω2 =
c2

gr
≥ 1. (2.8)

Notice that this expression is independent of N , the number of teeth on the gear. A typical trajectory of a
bouncing gear is shown in Figure 2.3.

Figure 2.3: Path traced by the centre of a bouncing drill (p(x)).
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Figure 2.4: Paths traced by the centre of a rolling drill (b(x)) and a bouncing drill (p(x)).

2.1.3 The Mixed Mode

When (1− ( T
2r )2)3/2 ≤ ω2 ≤ 1 the trajectory of the gear will pass through a combination of rolling and bouncing

modes, depending on the configuration of the gear when it contacts the rock. In particular, the gear will leave the
rock from contact configurations near x = 0 or x = T and simply roll when the contact is at x near T

2 . Since
we are interested mainly in the chaotic motion of the drill, we will not discuss the mixed mode any further in this
article.

2.1.4 Trajectory Map T for the Bouncing Mode

The centre of a bouncing drill launched from a contact configuration at x = x0 traces the parabolic curve

p(x0, x) = b(x0) + b′(x0)(x− x0)−
g

2c2
(x− x0)

2. (2.9)

A few of these curves are shown in Figure 2.4.
In order to calculate the bouncing trajectory we need to introduce the map T : [0, T ] → [0, T ] that takes a

launching configuration to the associated landing configuration. Therefore, we define T(x0) = x (modT ), where
T is period and x is the smallest value x > x0 such that

p(x0, x)− b(x) = 0. (2.10)

Clearly the map T is well defined. In the next section we will derive some of its geometric properties. For
now, one should compare Figure 2.5 to Figure 2.4 and note that for a drill launched from a configuration greater
than 0.5, only one tooth is advanced. On Figure 2.5, this corresponds to the right-most branch. The next branch
to the left corresponds to two teeth advanced, and so on. In Section 4, we will show that there is a non-increasing,
piecewise constant function κ(x) which maps configuration x to number of teeth advanced between launch point
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Figure 2.5: Map from launching configuration to landing configuration.

x and landing point T(x). This will allow us to reconstruct the true trajectory of the gear from only information
about the launch and land configurations as elements in [0, T ].

2.2 Geometry of the Trajectory Map T

Recall that equations (2.5) and (2.9) define the base curve b(x) (gear contacting rock) and the bouncing trajectory
p(x0, x) (with launch point x0), respectively. We also remind the reader of the geometric parameters r, the radius
of the gear and T , the distance between adjacent teeth on the gear. The base curve function b(x) is periodic of
period T and at this point it seems natural to non-dimensionalize the spatial variables as follows. Define

x =
x

T
, z =

z

r
, b(x) =

1

r
b(Tx), c =

c

T
, g =

g

r

so x ∈ [0, 1], z ≥ 0, and so-on.
The renormalized base curve becomes

b(x) =

√

1−
T 2

r2

(

x−

(

k +
1

2

))2

, k = 0, 1, 2, ...

Also, the critical velocity values, in non-dimensionalized form are easily derived:

Rolling condition:

w2 ≤

(

1−

(

T

2r

)2
)

3
2

⇔
c2

g

T 2

r2
≤

(

1−

(

T

2r

)2
)3/2

⇔
c2

g
≤
T

r

(

r2

T 2
−

1

4

)3/2

= A (2.11)

Bouncing condition:

w2 ≥ 1⇔
c2

g
≥
r2

T 2
(>

1

4
) = B (2.12)
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We are using A and B to denote the nondimensionalized critical values of velocity. Note also that
√

r2 −
T 2

4
≤ b(x) ≤ r ⇒

√

1−
T 2

4r2
≤ b(x) ≤ 1

b′(x) =
T

r
b′(Tx) =

T 2( 1
2 − x)

r2b(x)

b′′(x) =
T 2

r
b′′(Tx) = −

T 2

r2b(x)3

g ≤ −c2b′′(x) for all x ∈ [0, T ]⇔
gr

T 2c2
≤ −

r

T 2
b′′(x)⇔ b′′(x) +

g

c2
≤ 0

When in the bouncing mode, we need to use the non-dimensionalized trajectory

p(x0, x) =
1

r
p(Tx0, Tx) (2.13)

After renormalizing variables, the transformation T which is derived from the projectile map, launching from
x0 ∈ [0, 1] to hit at x = T(x0) ∈ [0, 1] generates a graph on [0, 1] × [0, 1] (Figure 2.5). The map T is clearly
well-defined, and from the geometry we expect it to be locally continuous. From the plot in Figure 2.5 it would
appear to be in fact piecewise monotone decreasing. In order to derive these properties analytically we will appeal
to the definition of T in implicit form: x = T(x0) if and only if

G(x0, x) = p(x0, x)− b(x) = 0 (2.14)

We begin our analysis with

Lemma 1. Suppose G(x0, x) = 0, Then

• ∂G
∂x (x0, x) = p′(x)− b′(x)

• ∂G
∂x (x0, x) < 0 except at possibly finitely many pairs (x0, x) corresponding to the ends of branches in the
map T or landing points x where b′ fails to exist.

Proof: A straightforward calculation gives (remember that all quantities are renormalized)

Gx(x0, x) = −
g

c2
(x− x0) + b′(x0)− b′(x)

and

p(x0, x)− b(x) = 0⇔ −
g

c2
(x− x0) = 2

{

b(x)− b(x0)

x− x0
− b′(x0)

}

Combining, we get

Gx(x0, x) = 2

{

b(x)− b(x0)

x− x0
−

b′(x) + b′(x0)

2

}

Note that projectile p(x0, x) is parabolic arc and for parabolas, we know the slope of any chord = average value
of two end point derivatives, i.e.

p′(x) + p′(x0)

2
=

p(x) + p(x0)

x− x0

So, since b(x) = p(x) and b(x0) = p(x0), we have

Gx = 2

(

p(x) + p(x0)

x− x0
−

b′(x) + p′(x0)

2

)

= 2

(

p′(x) + p′(x0)

2
−

b′(x) + p′(x0)

2

)

= p′(x)− b′(x)

where x = T(x0). The first claim has been shown. To see the second claim, observe first that for 1/2 ≤ x0 ≤ 1
we have 0 ≤ x ≤ 1/2 and for such x, b′(x) > 0. On the other hand, when b′(x) ≤ 0 one must have p′(x) ≤ b′(x)
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at the landing point by definition of x. This will be strict inequality unless the contact between the two curves is
tangential, in which case (x0, x) is laying on the end of one of the monotone branches in the graph of T where
the number of teeth passed takes a discrete jump. Conclude that Gx = p′(x)− b′(x) < 0 except at finitely many
points. 2

Remark. Lemma 1 already verifies the local continuity of T away from points x0 whose landing points x result
in tangency of p and b. With a little effort, one can show that, provided we have ω2 > B, the landing point cannot
be an integer unless x0 = 1 in which case x = 0; we are again dealing with the endpoint of a branch for the map
(in this case the rightmost branch).

Now using Lemma 1, we can obtain the following conclusion about geometric features of each branch in the
map T.

Theorem 1. dT

dx ≤ 0 at all but finitely many points in [0,1].
Proof: By the implicit function theorem, we have

dT

dx

∣

∣

∣

∣

x0

= −
Gx0(x0, x)

Gx(x0, x)

Note that from Lemma 1, except for finitely many points, we have Gx = p′(x)− b′(x) < 0. Since

Gx0 = (x− x0)(b
′′(x0) +

g

c2
)

Using bouncing condition, we have b′′(x0) + g
c2 ≤ 0. Obviously x− x0 > 0, so we haveGx0 < 0, then conclude

dT

dx ≤ 0 at all such points in [0,1]. 2

Another interesting feature observed in Figure 2.5 is the tangency at x = 1. This can also be verified analyti-
cally.

Theorem 2. limx0→1−1
dT

dx (x0) = 0.
Proof: For 1

2 � x0 < 1, we have

dT

dx
=

(x− x0)(b
′′(x0) + g

c2 )

b′(x)− p′(x)

Since
√

1− T 2

4r2 ≤ b(x) ≤ 1 and b′′(x) = − T 2

r2b(x)3 , ∃M , positive constant such that

−M < b′′(x0) +
g

c2
< 0 (bounded)

From the projectile map, we know for ∀ x0 ∼ 1, b′(x) > 0 and p′(x) < 0 ⇒ b′(x)− p′(x) > b′(x). Since we

have b′(x) =
T 2( 1

2−x)

r2b(x) ≥
T 2( 1

2−x)

r2 and x0 → 1−, ∃ 1
2 > δ > 0 such that

0 < x− 1 < δ ⇒ b′(x) >
T 2( 1

2 − δ)

r2
> 0 (bounded below)

Clearly x− x0 → 0 as x0 → 1−, so the result is proved. 2

2.3 Drilling Efficiency

2.3.1 Drill-Rock Interaction

The major mechanism for the drill breaking rock is the transfer of kinetic energy as the drill strikes the surface.
As the horizontal kinetic energy Kx is maintained by the constant x-velocity c, only the vertical component Kz

contributes to rock removal. The vertical kinetic energy is

Kz =
m

2
V 2

z , (2.15)
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where m is the mass of the drillhead (we normally would include also the borehole machinery and above ground
equipment attached to the drillhead in the calculation of m).

Vertical velocity Vz is

Vz = c
dp(x0, x)

dx
. (2.16)

An empirical parameter σ, including the material properties of the rock, drill geometry and more, must be deter-
mined experimentally. This parameter is used to convert the kinetic energy into a volume measure of rock broken.
The amount of rock broken due to a single impact, in appropriate units is

R(x0) =
σm

2

(

c
dp(x0, x)

dx

)2

(2.17)

and this clearly depends on the landing and launching configurations x and x0 respectively.

2.3.2 Efficiency Calculation

We choose the following notion of drilling efficiency as a function of speed c, namely, the ratio

E(c) =
total rock broken

number of revolutions
. (2.18)

Here the assumption is that these quantities are calculated over a long time interval.
If we consider the action of the drill over many bounces (say K bounces), rather than during an interval of

time, we can rewrite Equation (2.18) in a more amenable form

E(c) =
amount of rock broken after K bounces

(r/NB) · number of teeth advanced after K bounces
. (2.19)

Here, B is the radius of the bore hole so the factor in the denominator is the inverse of the number of teeth
advanced per revolution around the bore hole. By ”teeth advanced per bounce” we mean that, since c is held
constant, while the drill is mid-bounce it continues to rotate. The duration of the bounce determines how much
rotation will be achieved, or how many teeth will advance during that bounce. In this sense, the duration of a
bounce depends on the configuration of the drill when it is launched (see Figure 2.4). Averages in this expression
mean with respect to the discrete time events of K launches.

Figure 2.6 shows a number of tooth impacts of a five-toothed drill. The large point is at x0 = 0.25 and there
are 5 impacts at the small points, as 39 teeth pass by, so here K = 35.

10 20 30 40

0.2

0.4

0.6

0.8

1

1.2

Figure 2.6: Five subsequent impacts from x0 = 0.25.

The ith impact at xi is

xi = T ix0. (2.20)

For K impacts, the average amount of rock broken is

1

K

K
∑

i=1

R(T ix0). (2.21)
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Note that the expression is the ergodic average. By Birkhoff’s Ergodic Theorem [1], for large K we know this
time average is nearly equal to the spatial average

Avg(R) =

∫ 1

0

R(x0)φ(x0)dx0. (2.22)

The term φ(x0)dx0 = dmφ(x0) represents integration with respect to the invariant measure for the transformation
T, so the amount of rock broken after K contacts is estimated by

K

∫ 1

0

R(x)dmφ(x). (2.23)

Remark. An assumption is being made here that the invariant measure for T is computed with respect to a
density φ on [0, 1], i.e., that it is an absolutely continuous invariant measure. We will have more to say about this
assumption in the next section.

A similar approach may be taken for denominator in (2.19). In Figure 2.6 it is seen that the number of teeth
to pass will depend on the configuration at the launch point. Let κ(x) denote the number of teeth to pass between
under the trajectory launched at x. Figure 2.7 shows how κ corresponds to the branches in map T.
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Figure 2.7: Relationship between T and κ.

Once again, using Birkhoff’s Ergodic Theorem, the number of revolutions of the drill for K impacts is

K Avg(κ)

N B
r

=
K
∫ 1

0
κ(x)dmd

N B
r

, (2.24)

where, again, N B
r is the number of teeth that pass for one revolution of the drillhead in the bore hole. Now the

efficiency E is

E(c) =
NB

r

∫ 1

0
R(x)dmd

∫ 1

0 κ(x)dmd

. (2.25)

2.4 Dynamical Systems

We are given a map T : [0, 1] → [0, 1] and from the previous section we see that it is crucial to work out an
invariant measure for T, that is, a measure m, such that for every measurable subset I ⊆ [0, 1]

m ◦ T
−1 = m.
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In good situations we also hope that the measure is absolutely continuous with respect to the Lebesgue measure
dx, that is m = mφ where

mφ(I) =

∫

I

φ(x)dx,

”φ is called the (invariant) density for mφ”.

In [2] there is a theorem which ensures that a broad class of mappings (like our T) will have absolutely
continuous invariant measures. We note, however, that one of the conditions in the theorem is that |T′| ≥ α > 1
and this does not appear to be true for our T near x = 1. However, we can apply the result to a power of T to
obtain the condition, or we can induce the mapping on a subinterval where the derivative condition holds. Since
we did not have time to explore these technical issues in detail, we will assume that our map has an invariant
density.

We wish, then, to approximate a histogram of the invariant density φ and hence to estimate mφ for the given
data. We can again use Birkhoff’s Ergodic Theorem to conclude that the histogram density value over a bin is
proportional to the number of visits of an orbit of the map to that bin. So we should find a suitable interpolation
of the map T in order to compute the long orbit for Birkhoff’s Ergodic Theorem.

0.40 0.2
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Figure 2.8: Density histogram for N=4.00, r=1.41, c · T=10.

Cubic spline interpolation was used in a simple code to produce the histograms and the results were plotted in
Figures 2.8 and 2.9. In the first case, where the speed is c = 10 and there are 4 teeth we appear to get a density
for the map T. In the second plot, another calculation at speed c = 6 was made and we notice that the density
peaks in a single bin. In this case there are also 4 teeth. It would appear that, for this lower speed value, there is an
attracting fixed point for the dynamics near 0.15 so φ is a delta function. In fact there is no absolutely continuous
invariant measure. Point mass at the fixed point is the only relevant measure and we appear to have the case of
non-productive drilling mentioned in the introduction. In Figure 2.10, we can see the number of the jumps in the
data(κ(x)).
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Figure 2.9: Density histogram for N=4.00, r=1.41, c · T=6.
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Figure 2.10: The function κ(x) for N=4.00, r=1.41, c · T=10.
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Figure 2.11: The function R(x) for N=4.00, r=1.41, c · T=10.

We may plot the amount of rock broken by

R(x) =
2σ

m



−
g

T
(f(x) + κ(x) − x) + c

√

1−

(

T

R
(x − 0.5)

)2




2

,

where we have
T = 1.994041122,

N = 4.00,

r = 1.41,

g = 9.8/r = 6.950354610,

c = 10/T = 5.014941713,

σ = 0.25,

B = 10.0,

m = 100.

We should keep in mind that N is the number of teeth, r is the radius of the drill and c is the (renormalized)
speed. This is a very big drill! We may approximate the average of rock breaking by

Avg(R) ∼=

∫ 1

0

R(x)φ(x)dx ∼=

100
∑

i=1

Ridi,

which will lead us to the number 14839.89. And we can also approximate the number of revolutions (teeth) of
drill by

Avg(κ) ∼=

∫ 1

0

κ(x)φ(x)dx ∼=

100
∑

i=1

κidi,
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which will lead us to the number 394.83. Dividing the two results the efficiency will be found as

E(c) =
r

NB

∫ 1

0
R(x)φ(x)dx

∫ 1

0 K(x)φ(x)dx
= 1.32.

In order to explore the asymptotic behaviour of this drill, many more runs at different values of c would need to
be made and there was insufficient time during the workshop to do this.

2.5 Conclusion

This paper reports on the progress made during the 2005 PIMS Graduate Industrial Mathematics Modelling Camp
held during 4 days in May at the University of Lethbridge. The idea behind this model dates back to an old, but
obscure publication by A. Lasota and P. Rusek [3] in which a dynamical model of the hard rock drill was presented
and its analysis compared to field data for qualitative similarities. In many respects the work of Lasota and Rusek
was ad-hoc — nevertheless it gave an interesting application of ergodic theory to a concrete problem and the
qualitative agreement with field observations was striking.

The work in this current project mostly retraces the path of Lastoa and Rusek. However, the observations in
Section 2 (Geometry Section) are new results that have not been observed before. The numerical work in this
project could be extended in at least two directions. First, the codes to estimate the invariant density histogram
need to be made faster and more accurate. The cubic spline interpolation, while natural, is likely to introduce too
much error for long orbit calculations in expansive systems such as this. Second, the use of Birkhoff’s Ergodic
theorem to compute the histogram cannot be rigorously justified, even if it is carried out to a very high degree of
accuracy. (This is a valid criticism even for Lasota and Rusek’s work.) Other methods based on finite-dimensional
approximations to the action of T on the function space L∞ are robust and quick to converge. In some parts of
applied math these are known as Galerkin-type methods. In dynamics they are known as Ulam’s method for
computing the invariant density. Although these ideas were discussed during the workshop, there was insufficient
time to explore a numerical implementation of Ulam’s method.

In [4], [5], [6] one can find other treatments of the dynamical drill model. In [7], and [8] one can find state-
of-the-art applications of Ulam’s method to determination of invariant densities.
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Chapter 3

Symbols “R” Us
Seismic Imaging, One-Way Wave
Equations, Pseudodifferential Operators,
Path Integrals, and all that Jazz

Participants: Lou Fishman (Mentor, MDF International), Ojenie Artoun (Concordia University), Diana David-
Rus (Rutgers University), Matthew Emmett (University of Calgary), Sandra Fital (University of Regina), Chad
Hogan (University of Calgary), Jisun Lim (University of Colorado), Enkeleida Lushi (Simon Fraser University),
Vesselin Marinov (Rutgers University)
a.k.a. Lou and the Ψseudo-eight

PROBLEM STATEMENT: In this report we summarize an extension of Fourier analysis for the solution of
the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying
physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain
a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to
successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not
achieved before through other methods for this problem.
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3.1 Introduction

Understanding wavefield propagation and the construction of efficient, approximate numerical algorithms have
been important issues in many industrial settings for many years. Mathematicians, physicists, and other applied
scientists, in fields as diverse as ocean acoustics, electromagnetics, medical imaging, optical design, and seismic
exploration, have struggled with these issues. Wave propagation in complex environments is a classical prob-
lem that has been attacked by a variety of approaches over the years, including (1) direct wavefield approxima-
tions (e.g., perturbation theory, asymptotic ray theory, Gaussian beams) and (2) computational partial differential
equation (PDE) methods (e.g., finite differences, finite elements, spectral methods, wavelets). However, these
approaches can often be problematic. Approximation methods often offer some physical insight, but they may
be limited to specific parameter regimes, not properly accounting for the underlying physics outside of these
regimes. Computational PDE methods, in the frequency domain, in particular, can often be prohibitively expen-
sive and time consuming for large scale problems involving large data sets. Moreover, the computational PDE
methods do not, in general, reveal the underlying physics in a transparent manner.

Rather than considering a wide range of wave propagation formulations in this project, we will focus on
seismic imaging applications. The problem is illustrated in Figure 3.1, which shows the Marmousi synthetic
velocity model for an area off the coast of West Africa. Even though this is a relatively simple, two-dimensional,
constant density, scalar model, there is complex fine layering, fault lines, velocities ranging from 1500 m/s to
almost 6000m/s, regions with very strong gradients, a reservoir, and regions exhibiting pronounced focusing and
defocusing phenomena. The idea is to set off explosive sources along the surface, and from the collected reflection
data along the surface, construct an appropriate image of the substructure. In other words, we want to construct
images of the Marmousi model, from the synthetic data, that accurately reflect the complex model structure (at
least to the extent that this inverse process will allow). In the seismic industry, of course, these reconstructions
are done with actual field data sets, which inherently contain limited and noisy data. An image of this model
computed in 1998 is illustrated in Figure 3.2.

Figure 3.1: Marmousi synthetic velocity geological model.

One of the most commonly used techniques for seismic imaging is seismic depth migration. Kirchhoff mi-
gration is based on applying asymptotic ray theory for the wave propagation process. While the workhorse of the
seismic industry, and very appealing from a physics standpoint, this high-frequency asymptotic method is inad-
equate for modelling wave propagation in Marmousi-type environments at the lower end of typical experimental
seismic bandwidths (say between 10 − 30 Hz). This can be contrasted with wave equation migration meth-
ods based on computational PDE methods and the locally-homogeneous-medium (LHM) approximation to the
wavefield extrapolator (the Generalized Phase Shift Plus Interpolation (GPSPI) algorithm). Computational PDE
methods can often result in excessively large linear systems. The GPSPI algorithm is based on the industry belief
that the LHM approximation to the wavefield extrapolator is an exact statement of the global propagation process
(at least for range-independent models). This, unfortunately, is not the case outside of a strictly homogeneous
medium.

The specific problem for this GIMMC is the following. Construct a wave propagation model, at the level
of the fixed-frequency, scalar Helmholtz equation, which can form the basis for wave equation migration algo-
rithms. This wave propagation model should be a full-wave model, so as to be appropriate over the entire seismic
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Figure 3.2: Image of Marmousi model computed in 1998. Curtis Ober. 1998, from website
(http://www.cs.sandia.gov/ ccober/).

bandwidth, and computationally faster and physically more transparent than PDE-based methods, all the while
providing a complete mathematical framework in which to examine, correct, and extend the GPSPI algorithm. It
would also be very convenient if the computational realization of this model ran (in principle) exactly in the same
manner as the GPSPI algorithm. In other words, we want to combine the physical insight and relative computa-
tional speed of GPSPI with the numerical accuracy of a complete PDE-solver-based algorithm. Essentially, we
want the best of both worlds for a seismic migration algorithm.

We will approach this problem through the application of what is loosely referred to as “phase space and path
integral” methods, which were developed primarily in the quantum physics and theoretical mathematics (PDE)
communities. The principal aims of this approach are to (1) exploit well-posed, one-way marching methods
in inherently two-way global problems, (2) exploit the correspondences between classical wave propagation,
quantum physics, and microlocal analysis (modern mathematical asymptotics), and (3) extend Fourier analysis to
inhomogeneous environments. Since this is a brief report, and these “phase space and path integral” methods have
a rather involved and extensive literature, we will introduce them essentially through the homogeneous medium
case, and rely on the citations in the References section for the detailed story.

3.2 Homogeneous Medium

We begin with the full wave equation which models the propagation of waves in a medium. For simplicity we
will work in two dimensions (everything can be extended to arbitrary dimension).

(

∂2
x + ∂2

z −
1

c2(~x)
∂2

t

)

ψ(~x, t) = S(~x− ~xs, t− t0), (3.1)

where x is the propagation direction, z is the transverse direction, c(~x) is the speed of sound in the medium,
S(~x, t) is a source term, t is time, and ~x = (x, z).

We consider a wavefield ψ(~x, t) = φ(~x)e−iωt, where ω is the frequency, and assume that the source S(~x, t)
is a delta distribution in both position and time. By taking a Fourier transform in the time variable we obtain the
Helmholtz equation, which describes the propagation of a single frequency wave:

(

∂2
x + ∂2

z + k̄2K2(~x)
)

φ(~x) = −δ(~x− ~xs), (3.2)

where K(~x) is the refractive index of the medium at the point ~x, and k̄ = ω/c0.
To gain physical insight, we consider a homogeneous medium in which K(~x) = K0, and solve (3.2) away

from the source:
(

∂2
x + ∂2

z + k̄2K2
0

)

φ(x, z) = 0. (3.3)
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We can formally separate the solution into two non-interacting waves: the right-going wave φ+, and the left-going
wave φ−:

(

i

k̄
∂x + B

)

φ+(x, z) = 0, (3.4)

and
(

−
i

k̄
∂x + B

)

φ−(x, z) = 0, (3.5)

where

B ≡

(

K0
2 +

1

k̄2
∂2

z

)1/2

. (3.6)

The equations above are a formal factorization of expression (3.3). To make sense of B, consider the Fourier
transform of (3.3). The equation for φ+(x, z) is as follows:

i

k̄
∂xφ

+(x, z) +

∫

R

dp(K2
0 − p

2)1/2eik̄pzφ̂+(x, p) = 0. (3.7)

where φ̂+(x, p) is the Fourier transform of φ+(x, z). Similarly, we can write an equation for φ−(x, z).
It is well known that the fundamental solution to this one way wave equation can be represented essentially as

a first order Hankel function of the first kind, which can be expressed by the following identity:

G+(x, z|0, z′) = lim
N→∞

∫

R2N−1

N−1
∏

j=1

dzj

N
∏

j=1

k̄

2π
dpj

· exp



ik̄
N
∑

j=1

[

pj(zj − zj−1) +
x

N
(K2

0 − p
2
j )

1/2
]



 . (3.8)

The fundamental solution representation in (3.8) may appear rather involved for what is essentially a Hankel
function identity. However, it is exactly in the form of a phase space path integral representation from quantum
physics, and it is this form that will be used to represent the wavefield solutions in the more general inhomoge-
neous cases. Moreover, the form of (3.8) immediately results in a marching computational algorithm.

We can use the above expression to construct a marching algorithm, as follows:

φ+(x+ ∆x, z) =

∫

R

dpeik̄pz
[

eik̄∆x(K2
0−p2)1/2

φ̂+(x, p)
]

. (3.9)

We recognize this as a formula involving forward and inverse Fourier transforms:

φ+(x+ ∆x, z) = F−1
[

eik̄∆x (K2
0−p2)1/2

F
[

φ+(x, z), p
]

, z
]

. (3.10)

This algorithm is simple, well-posed, and incorporates all the physics of the homogeneous problem.

3.3 Transversely-inhomogeneous Medium

Now we consider a slightly more complex case than the completely homogeneous medium. We introduce depen-
dence of K along the z axis, the transverse direction. Solving this problem will naturally lead us to the solution
of the general problem in which we also have dependence on x, the propagation direction.

As in the homogeneous case, right- and left-going waves are decoupled. In both the transversely-inhomogeneous
and homogeneous medium cases, there are physical, right- and left-travelling wave fields, as follows from simple
separation of variables arguments. An explicit representation of (3.4), written for the transversely-inhomogeneous
case, is provided by the theory of pseudodifferential operators from the modern mathematical theory of asymp-
totics, in addition to more formal operator construction methods developed in the quantum physics community.
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These developments enable the explicit construction of nontrivial functions of non-commuting operators, such as
the formal square-root operator in (3.6) with the constant index of refraction replaced by its local, transversely-
inhomogeneous value. The equation for the right-going wave is given in the Weyl pseudodifferential operator
calculus by:

i

k̄
∂xφ

+(x, z) +

k̄

2π

∫

R2

dp dz′ ΩB

(

p,
z + z′

2

)

exp(ik̄p(z − z′))φ+(x, z′) = 0, (3.11)

where the operator symbol ΩB satisfies the composition equation:

ΩB2(p, q) = K2(q)− p2

=

(

k̄

π

)2 ∫

R4

dt ds dy dw

· ΩB(t+ p, s+ q)ΩB(y + p, w + q) exp(2ik̄(sy − tw)). (3.12)

The form of (3.11) is exactly the same as in the homogeneous case, except that the square root function is

replaced by ΩB. In the homogeneous medium limit, ΩB reduces to
(

K2
0 − p

2
)1/2

. This is a representation of the
formal square root operator from the Weyl pseudodifferential calculus. The operator is defined through its square,
as is the case in functional analysis.

It may seem strange that we are effectively replacing a linear partial differential equation with a quadratically
nonlinear, nonlocal composition equation (3.12). However, it will turn out that these symbols ΩB can actually
image the environments directly. Moreover, approximations made at the level of the symbol will have a far
greater range of validity than the corresponding approximations made at the level of the wavefield. These points
are discussed in the literature citations.

We have the same path integral and algorithm as the one we described for the homogeneous case. The differ-
ence is that (K2

0 − p
2)1/2 is replaced by:

hs
B

(p, q) =

(

k̄

π

)
∫

R2

ds duΩB(s, u)e−2ik̄(q−u)(p−s). (3.13)

While exact solutions for specific profilesK2(z) have been constructed, applications to seismo-acoustic wave
propagation, imaging, and inversion will depend upon uniform asymptotic expansions of the operator symbol.
For ΩB(p, q) this takes the general form:

ΩB(p, q) ∼
(

K2(q)− p2
)1/2

+ uniform terms throughO(1/k̄2), (3.14)

in the high-frequency (k̄ → ∞) limit. The details of the exact solution constructions and the explicit form and
derivation of (3.14) are best left to the literature citations. The most important point is the following. While
the modern mathematical theory of asymptotics and constructions from quantum physics provide the necessary
mathematical framework to explicitly derive our equations, the asymptotic solution of the composition equation
(3.12) lies outside of both of these areas. The reason for this is, essentially, that these theories and examples from
quantum physics are based on propagation of singularities arguments (think time domain wave propagation),
while the Helmholtz equation is a smoothing problem (think frequency domain wave propagation). Constructions
like (3.14) require going beyond the modern mathematical theory of asymptotics and examples from quantum
physics.

Assuming that we can compute ΩB numerically, or asymptotically approximate it, then we can use it in the
following marching algorithm:

φ+(x+ ∆x, z) ≈

∫

R

dp exp(ik̄pz)
[

exp(ik̄∆xhs
B(p, z))φ̂+(x, p)

]

, (3.15)

or, in Fourier transform notation:

φ+(x+ ∆x, z) ≈ F−1
[

exp(ik̄∆xhs
B

(p, z))F
[

φ+(x, z), p
]

, z
]

. (3.16)



30 CHAPTER 3. SYMBOLS “R” US

3.4 Generally-inhomogeneous Medium

In the homogeneous and transversely-inhomogeneous media we were able decouple the right- and left-going
waves. We were able to formally factor the Helmholtz equation. However, in a generally-inhomogeneousmedium,
in which K depends on both the transverse and propagation directions, the right- and left-going waves are inher-
ently coupled. In a general inhomogeneous medium, backscattering may be present – the problem becomes
global in nature (see Figure 3.3) . The problem is inherently two-way. It is straightforward to construct one-way
wave equations in the transversely-inhomogeneous and homogeneous cases since the physics already gives us
independent one-way wave equations. But how can we construct one-way wave equations in this general case?
The answer lies in considering the general scattering problem for the geometry of Figure 3. Applying invari-
ant embedding methods enables the construction of the reflection and transmission operators associated with the
generally-inhomogeneous block. Transforming this scattering picture into a boundary-value picture, in terms of
Dirichlet-to-Neumann operators and the total wavefield and its normal derivative, produces the desired result. We
get a one-way equation to construct the operator, and a one-way wave equation, in terms of the operator, governing
the total wavefield. The detailed treatment can be found in the literature citations.

Figure 3.3: Schematic of inhomogeneous block.

In a similar manner to the homogeneous and transversely-inhomogeneous models, the right-going field is
governed by:

(

1

k̄
∂x + Λ

+(x, b)

)

φ(x, z) = 0, (3.17)

(and similarly for the left-propagating field). From (3.17) we note that Λ+ is the Dirichlet-to-Neumann operator.
In fact the square root operator B is the transversely-inhomogeneous DtN operator as well.

The one-way wave equation is:

1

k̄
∂xφ(x, z) +

k̄

2π

∫

R2

dp dz′ ΩΛ+

(

x, b; p,
z + z′

2

)

exp(ik̄p(z − z′))φ(x, z′) = 0 (3.18)

where ΩΛ+ is the symbol in the Weyl calculus corresponding to Λ
+.

The Λ
+(x, b) operator encapsulates the two-way scattering behaviour of the block between x and b. That is,

Λ
+(x, b) contains all information about the block’s internal reflections and transmissions between x and b. By

solving the series of internal scattering problems that the wavefield encounters as it propagates into the block, the
inherently coupled problem is decoupled into independent wavefield components, resulting in the desired one-way
wave equation. We march one way (from b to x) to construct Λ+ (which describes the two-way wave behaviour),
and then we march the other way to obtain the total wavefield.

A short, formal derivation of the one-way equation defining the DtN operator is the following. Taking the
partial derivative with respect to x of equation (3.17), applying (3.17), and using the original Helmholtz equation
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result in the marching equation for Λ
+:

1

k̄
∂xΛ

+(x, b) =
(

Λ
+(x, b)

)2
+ B

2(x), (3.19)

with the initial condition: Λ
+(b, b) = −iB(b).

The composition equation for ΩΛ+ is:

1

k̄
∂xΩΛ+(x, b; p, q) =

(

k̄

π

)2 ∫

R4

dt ds dy dwΩΛ+(x, b; t+ p, s+ q)

· ΩΛ+(x, b; y + p, w + q) exp(2ik̄(sy − tw)) +K2(x, q)− p2, (3.20)

with initial condition: ΩΛ+(b, b; p, q) = −iΩB(b; p, q). Equation (3.20) is just the expression of (3.19) in the
Weyl pseudodifferential operator calculus.

As in the transversely-inhomogeneous case, we avoid solving the composition equation (3.20) by applying
uniform asymptotics. While computational algorithms exist that solve nonlocal Riccati-type equations like (3.20),
the uniform asymptotic approximation of the operator symbol is the key to a computationally feasible algorithm.
More details can be found in the literature citations.

We have extended the homogeneous Fourier analysis to the general inhomogeneous case. The path integral
representation of the fundamental solution is:

G+(x, z|x0, z
′) = lim

N→∞

∫

R2N−1

N−1
∏

j=1

dzj

N
∏

j=1

k̄

2π
dpj·

· exp



ik̄

N
∑

j=1

[

pj(zj − zj−1) + i
∆x

N
hs
Λ+(xj , b; pj , zj)

]



 , (3.21)

where

hs
Λ+(x, b; p, z) =

k̄

π

∫

R2

dsdtΩΛ+(x, b; s, t) exp
(

−2ik̄(q − t)(p− s)
)

. (3.22)

We use hs
Λ+(x, b; p, z), the symbol in the standard calculus, because it is computationally more efficient. Again,

the marching computational algorithm takes the same form as the homogeneous medium construction.
This concludes our approach to modelling the two-way wave propagation problem using a one-way marching

algorithm.

3.5 Discussion

We have introduced one-way methods into an inherently two-way problem. In a generally-inhomogeneous
medium, even though the source wave is a one-way wave, once it enters an inhomogeneous environment, in-
ternal scattering produces a two-way wavefield. Our model describes these complex behaviours through a pseu-
dodifferential operator, which allows us to employ a one-way marching algorithm to numerically solve for the
wavefield.

Throughout the theory examples from various fields of physics have guided us. Wavefield splitting, invariant
embedding, and phase space (Weyl pseudodifferential, Fourier integral operator and path integral) methods were
used to reformulate the problem in terms of an operator that includes all scattering physics. There are both phys-
ically insightful and mathematically succinct ways to derive governing equations for this scattering operator. We
have chosen to present this material as reasonable generalizations of the easily derived results for a homogeneous
medium. The results, in effect, provide an extension of Fourier methods to inhomogeneous environments.
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The methods and algorithms, especially the uniform asymptotic expansion of the DtN operator, mentioned in
this report, are broadly applicable in many different areas of industry as outlined previously.

The developments in this paper provide the framework for seismic depth migration imaging. The uniform
asymptotic approximations of the operator symbols extend the well known GPSPI algorithm. Figure 3.4 illustrates
the Marmousi image produced with the leading-order square root function term alone (GPSPI). The inclusion of
the uniform terms implied in (3.14) will result in even greater resolution.

Figure 3.4: Image of Marmousi model computed using the leading term of the asymptotic approximation. Hugh
Geiger, personal communication.
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Chapter 4

Problems in Facility Location
Optimization

Participants: Daya Gaur (Mentor, University of Lethbridge), Zac Friggstad (University of Lethbridge), John
Gonzalez (Northeastern University), Chong Liu (University of Victoria), Maryam Mizani (University of Victo-
ria), Hatesh Radia (University of Massachusetts, Lowell), Jihong Ren (University of British Columbia), Dallas
Thomas (University of Lethbridge), Pengpeng Wang (Simon Fraser University), Liang Xu (University of Wash-
ington), Oulu Xu (York University), Yaling Yin (University of Saskatchewan), Zhidong Zhang (University of
Saskatchewan)

PROBLEM STATEMENT: In the general setting of the Facility Location (FL) problem, we have a collection of
N facilities F with opening cost fi for facility i, and a collection of M clients C. Client j also has a connection
cost cij to facility i for being served. Alternatively, we use the notation of i ∈ F (j ∈ C) to denote facility i (client
j). The facility location problem refers to opening a subset of facilities and assigning each client with at least one
open facility such that the total cost, the sum of the facility opening costs and the connection costs corresponding
to the facility client assignments, is minimum. In [1], for a special case of FL with the metric assumption1 for
connection costs, Jain and Vazirani used a primal dual schema based algorithm to achieve an approximation ratio
of 3. In this modelling camp, we considered several of these variants while relaxing metric constraints, through
application and performance analysis based on algorithms utilizing the primal dual schema. The first problem
addressed the case where the connection costs are within a certain range. From there focus shifted to where con-
nection costs are either zero or infinity and opening costs are one. Lastly, we compared the performances of these
algorithms with heuristic based algorithms such as local search.

List of Acronyms:

CSC — Complement Slackness Conditions
DLP — Dual Linear Program
FL — Facility Location Problem
IP — Integer Program
LP — Linear Program

1Metric assumption here refers to that for every two facilities i and i′ and two clients j and j′, the connection costs cij , ci′j , ci′j′ and
cij′ satisfy cij + ci′j + ci′j′ ≥ cij′ .
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4.1 Introduction

In the general setting of the Facility Location (FL) problem, we have a collection of N facilities F with opening
cost fi for facility i, and a collection of M clients C. Client j also has a connection cost cij to facility i for being
serviced. Alternatively, we use the notation of i ∈ F (j ∈ C) to denote facility i (client j). The facility location
problem refers to opening a subset of these facilities and assigning each client with at least one open facility such
that the total cost, the sum of the facility opening costs and the connection costs corresponding to the facility
client assignments, is minimum. With the introductions of the integral binary variables yi to denote whether to
open facility i (yi = 1) or not (yi = 0), and xij to denote whether facility i is assigned to client j (xij = 1) or not
(xij = 0), the Integer Program (IP) formulation, of the facility location problem is given by:

IP: Minimize
∑

i∈F

fiyi +
∑

i∈F ,j∈C

cijxij

Subject to: ∀j ∈ C :
∑

i∈C

xij ≥ 1

∀j ∈ F , ∀i ∈ C : yi ≥ xij

yi, xij ∈ {0, 1} (4.1)

FL is a classic combinatorial optimization problem and as stated in [1], received much exposure as early
as the 1960’s. The NP-hardness 2 nature of this problem prevents a fast (in polynomial time) algorithm for an
optimal solution. Therefore efforts were made for a fast approximation algorithm. (Approximation here refers
to the algorithmic performance ratio with respect to the optimal solution in the worst case.) In the seminal
paper [1], Jain et. al. used a Primal-dual schema based algorithm (running in polynomial time) to achieve a
3 approximation ratio for the Metric Facility Location problems, assuming connection costs satisfied triangle
inequality properties. The idea was to first relax the IP formulation to a linear program (LP) and derive its dual
linear program (DLP). Working in DLP, while maintaining dual feasibility, a feasible primal solution can be
derived using the Complementary Slackness Conditions (CSC). The metric assumption is then used to prove the
performance ratio of 3. Note that the metric assumption is used heavily in their analysis.

In this workshop, we investigated the power of the primal dual schema without the metric assumptions, i.e.,
we applied the primal dual schema based algorithms to two variants of FL problem without metric assumptions
and analyzed the performances of the solutions. Specifically, first we looked into the case where the connection
costs are bounded, or within a certain range. We show that in this special case, even under the condition that the
triangle inequality property is violated, the primal-dual algorithm can still be applied and achieve a constant ratio
performance provided that some suitably defined ratio is bounded. Second, motivated by industrial applications,
we looked into another special case of FL where the connection costs are either 0 or ∞, i.e., either instantly
connected or disconnected. For this we show that the primal-dual algorithm of Jain et. al. [1] cannot achieve a
constant performance ratio via a counterexample. Third, we empirically compared the performance of the primal
dual algorithm with a simple heuristic based algorithm, i.e., the local search algorithm, for some difficult problem
instances. We show that for these instances, the local search algorithm always performs better. This also validates
the popular usage of local search in common practices.

In the following sections, we discuss the problems, the primal dual algorithm from [1], and the analysis of the
algorithm on our classes of problems.

4.2 Bounded Connection Costs

As described in the introduction, this case corresponds to connection costs within a certain range, [cmin, cmax],
while relaxing the metric assumption of triangle inequality. By definition, we have
cmin = mini,j{cij} and cmax = maxi,j{cij}. In the following, we give the formal problem formulation, the
description of the applied primal dual algorithm, and an analysis of performance ratio.

2It is generally believed that NP-hard problems do not admit polynomial time algorithms.
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4.2.1 Problem Definition

In the integer programming (IP) problem form, this variant FL problem is given as follows. Let yi be 1 if facility
i is open and 0 otherwise. Also, let xij be 1 if facility i is connected to client j and equal to 0 otherwise. Then
this problem is formulated as:

IP: Minimize
∑

i∈F

fiyi +
∑

i∈F ,j∈C

cijxij , cij ∈ [cmin, cmax], ∀i ∈ F , j ∈ C

Subject to: ∀j ∈ C :
∑

i∈C

xij ≥ 1

∀j ∈ F , ∀i ∈ C : yi ≥ xij

yi, xij ∈ {0, 1} (4.2)

Note that the only difference (in formulation) between this bounded case, (4.2), and the general form, (4.1) in
the introduction, is the condition cij ∈ [cmin, cmax], ∀i ∈ F , j ∈ C in (4.2).

As mentioned, we relax this IP formulation into a LP setting by relaxing yi and xij to be positive reals, and
the LP formulation is given as:

LP: Minimize
∑

i∈F

fiyi +
∑

i∈F ,j∈C

cijxij , cij ∈ [cmin, cmax], ∀i ∈ F , j ∈ C

Subject to: ∀j ∈ C :
∑

i∈C

xij ≥ 1

∀j ∈ F , ∀i ∈ C : yi ≥ xij

yi, xij ≥ 0 (4.3)

Using αj to denote the dual variable associated with each client and βij associated with each connection
between i ∈ F and j ∈ C, corresponding to each constraint above, the dual linear program (DLP) is given as:

DLP: Maximize
∑

j∈C

αj

Subject to: ∀i ∈ F , ∀j ∈ C : αj − βij ≤ cij cij ∈ [cmin, cmax]

∀j ∈ F :
∑

j∈C

βij ≤ fi

αj , βij ≥ 0 (4.4)

αj can be interpreted as the price that client j would like to ‘pay’ for the facility opening cost, fi, and the
connection cost, βij [1].

4.2.2 Algorithm Description

Since we are using the same algorithm as in [1], here we briefly describe the algorithm and refer the reader to [1]
for details.

The primal dual schema based algorithm has two phases. In Phase I, we first initialize all the dual variables
to be 0, αj = 0, j ∈ C and βij = 0, i ∈ F , j ∈ C. We then increase all the αj , j ∈ C, simultaneously until one
αj is equal to one connection cost cij . (This connection is the one that connects client j to facility i.) We say
facility i and client j are directly connected, and then start increasing βij (starting from 0) simultaneously with
the αj . This guarantees the first set of constraints in DLP, αj − βij ≤ cij , are always satisfied. At some point,
when the sum of βij associated with facility i is equal to the opening cost fi, i.e.,

∑

j∈C
βij = 1, we temporarily

open facility i, and freeze (stop increasing) all the αi’s that are connected to it. (Note that this will automatically
freeze the nonzero βij’s.) We do this until all the clients are connected to at least one temporarily open facility.
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In Phase II, we collect all the temporarily open facilities in the order of their openings and connect two of
them if the two serve to one common client. If the connecting facility i of a client j is temporarily open and
connects another temporarily open facility i′, we define the nonexisting connection between j and i′ to be an
indirect connection. We then extract the maximal independent set from this temporarily open facility set based on
their opening order. That is, we pick the first temporarily open facility, remove all the other ones connecting to it
(sharing common connected clients with it), and pick the next facility until all are picked or removed. We open all
the picked facilities, i.e., the corresponding yi = 1, and assign them to the clients that are directly connected to it,
i.e., the corresponding xij = 1. For those clients that are not directly connected to the open facilities, we assign
the indirectly connected open facilities to them3.

4.2.3 Performance Analysis

As mentioned, if we assume the connection costs comply with the triangle inequality, the above algorithm guar-
antees the approximation ratio of 3. Here we only have bounds on the connection costs. However, we are still
able to show, in the following theorem, the performance ratio is bounded by cmax

cmin
, the ratio between the upper

and lower bounds of connection costs.
Theorem 1: Let x∗ij and y∗i denote the output of the algorithm described above, andOPT denote the optimal

value for this problem. Then
a)

∑

i∈F ,j∈C

cijx
∗
ij +

∑

i∈F

fiy
∗
i ≤

cmax

cmin
OPT.

b) The upper bound in a) is tight.

Following [1], we interpret dual variable αj as the price that client j would like to pay to construct the feasible
primal solution. The price includes the connection cost for the opened facility i assigned to client j and the
opening cost of that facility. We use αe

j and αf
j to denote the two parts of αj that contribute to the connection cost

to and the opening cost of, the facility client j respectively. Thus, αf
j = αj − cij and αe

j = cij . The crucial fact
needed for the proof is given in the following lemma. Its proof is just a slight modification of the proof of Lemma
5 in [1].
Lemma: If client j is indirectly connected to facility i then

cij ≤
cmax

cmin
αe

j .

Proof From the proof of Lemma 5 in [1], there exists a facility i′ and a client j′ such that

3αj ≥ ci′j + cij′ + ci′j′ ≥ 3cmin.

Thus,

αj ≥ cmin = cmax
cmin

cmax

and hence
cij ≤ cmax ≤

cmax

cmin
αj =

cmax

cmin
αe

j

Proof of Theorem 1
a) For a directly connected client j we have

cij = αe
j ≤

cmax

cmin
αe

j .

Combining this inequality with the result from the above lemma we have

3Note that each client must have either a direct or an indirect connection to an open facility, because otherwise the first temporarily opened
facility that directly connects it must be opened.
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∑

i∈F ,j∈C

cijx
∗
ij ≤

cmax

cmin

∑

j∈F

αe
j .

Since the opening cost of each open facility are ‘paid’ by those clients that directly connects to it, we have
∑

i fi ≤
∑

j α
f
j . (This simple fact is called Corollary 4 in [1].)

So we have,

∑

i,j

cijx
∗
i,j +

∑

i

fiy
∗
i ≤

cmax

cmin

∑

j

(αe
j + αf

j )

=
cmax

cmin

∑

j

αj

≤
cmax

cmin
OPT

b) Here we construct a family of examples that establish that the ratio cmax/cmin is tight.

Optimal SolutionApproximate Solution

Figure 4.1: A tight example that the performance of the primal dual algorithm approaches k2

k1
.

The construction is as follows, shown in Fig. 4.1. For n clients (n > 3), c1, c2, . . . , cn and 2 facilities F1, F2,
the connecting costs satisfy the following: cij ∈ {k1, k2}, where k1 < k2; c11 = c12 = c2l1 = k1 for 2 ≤ l1 ≤ n,
and c1l2 = c21 = k2 for 3 ≤ l2 ≤ n. Furthermore, the two facilities have equal opening costs f1 = f2 = f > 0

and f
n−1 < k2 − k1 and f(n−2)

n−1 < k2 − k1.
The optimal solution for this setup is to open both facilities and connect every client with the one facility for

which the connecting cost is k1. The corresponding optimal cost is 2f + nk1. On the other hand, the solutions
given by our algorithm yield the end result of opening only facility 1 and connecting all clients to it. And the
corresponding overall cost is f + 2k1 + (n− 2)k2.

This implies the performance ratio is f+2k1+(n−2)k2

2f+nk1
. As n approaches infinity, this ratio approaches k2/k1 in

the limit. This implies the approximation ratio, cmax

cmin
, stated in the above theorem, is tight.

In conclusion, for this variant of FL in which the connection costs are within a range, we have shown the
application of the primal dual algorithm achieves a tight performance ratio, the ratio between upper and lower
bounds of the connection costs. Further along this line, as a generalization, we also considered an LP version
where the constraints xij , yi ∈ {0, 1} are replaced by xij , yi ≥ 0. The optimal solution in this case will necessar-
ily have xij , yi ≤ 1. Therefore the xij and yi variables represent “partially connecting” and “partially opening”.
We would also like to investigate the approximation ratio of a generalized version of the primal dual algorithm for
this problem.
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4.3 Line Facility and Point/Rectangular Client in 2D

The second problem we considered was motivated by industrial applications. Consider an airplane hangar with
randomly dispersed workshops of different sizes, Fig. 4.2. These specific workshops need to be serviced with
tools and parts by cranes which are fixed on the ceiling of the workshop. To reduce the construction costs of these
cranes, our goal is to reduce the number of cranes needed to service all the workshops.

Figure 4.2: An Example.

To further motivate the problem formulation, let us see an abstract version of the problem as shown in Fig. 4.3.
This is a 2D “warehouse” setting with scattered workshops, the rectangles, and possible line facility positions,
horizontal and vertical lines. We would like to choose (construct) the minimum number of lines, a subset of all
the possible lines, and at the same time, still be able to service all the clients, i.e., each client has to have at least
one chosen line servicing (going through) it.

In the following, we are going to formulate the program using IP formulations, apply the primal dual algorithm
as before, and analyze its performance ratio. First, we consider the case where the clients can be modelled as
points. Next we consider the case where we have rectangular clients.

4.3.1 Point Client Case

Problem Definition

For line facilities (restricted to be either horizontal or vertical) specified by either the x coordinate (vertical lines)
or the y coordinate (horizontal lines), we denote the line set by L = {l1, l2, l3, . . . , lN}. For the point workshop
i, or point client, specified by (x(i), y(i)) (x(i) and y(i) give the x− and y− coordinates of point client i), we
denote it by the line labels in L corresponding to its coordinates respectively, i.e., (x(i), y(i))↔ (lx(i), ly(i)). We
denote the point client set by C = {c1, c2, . . . , cM}, where ci = (lx(i), ly(i)). Note that in the point case, each
point has only two corresponding lines.

The problem is to select a subset of L such that each point workshop is either serviced by the horizontal line
or the vertical line going through it.

In the Integer Program (IP) setting, by using zk ∈ {0, 1} to denote whether line k is open (1) or not (0), we
will have
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: Workshop

: Facility Line

Figure 4.3: A Warehouse Example.

IP: min

N
∑

j=1

zj

s. t. ∀ client i, zlx(i)
+ zly(i)

≥ 1

zk ∈ {0, 1} (4.5)

By relaxing the integers solutions to positive reals, the IP above can be written as a Linear Program (LP)
problem as follows,

LP: min

N
∑

j=1

zj

s. t. ∀ client i, zlx(i)
+ zly(i)

≥ 1

zk ≥ 0 (4.6)

By setting the above LP as our primal problem, the corresponding dual linear problem (DLP) of the above can
be formulated as:

DLP: max

M
∑

i=1

αi

s. t. ∀ line j,
∑

client k is on line j

αk ≤ 1

αi ≥ 0 (4.7)
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Primal-dual Algorithm and Performance Analysis

Before the description of the primal dual algorithm, we would like to motivate its usage by first analyzing some
simple algorithms, such as the greedy algorithm described below, and get some insights into this problem.

The greedy algorithm is the most natural way of attacking this particular problem. It works in the following
fashion. The set of unsatisfied clients is initialized to include all the clients. Then the facility which intersects
the most number of unsatisfied clients is picked. Once these clients are removed from the unsatisfied clients set
the next facility which intersects the most unsatisfied clients is picked. These steps are repeated until the set of
unsatisfied clients is empty.

However, the performance of this greedy algorithm can be quite bad as shown by Hassin and Megiddo. Sup-
pose the number of horizontal lines is N and we deploy the points in the way shown in Fig. 4.4. The number of
output lines given by the greedy algorithm is (1 + 1/2 + 1/3 + · · · + 1/N)N . It is apparent that the optimal
solution to this case is N horizontal lines. Therefore, the approximation ratio is (1 + 1/2 + 1/3 + · · · + 1/N),
which can be in the order of N .

N=6

Figure 4.4: An example that shows the performance ratio of the greedy algorithm is log n.

Again, we resort to the primal dual schema based algorithm described above, and show that it achieves 2-
approximation ratio. Here we recapitulate the algorithm in this different setting (where connection costs are either
0, if the corresponding line is on the point, or∞, if the line is not on the point). In this algorithm, a notion of time
is defined, which is associated with each event as it happens. The algorithm starts at time 0. The dual variables αi

associated with point client i are all initialized to be 0. Then the algorithm raises the dual variables at a uniform
rate. When the sum of αi of the points on a line is equal to 1, the line is open. All the points on the line are
serviced by the line and we freeze their dual variables. This process iterates till all the points are serviced.

Theorem 2: The Primal-dual Algorithm has an approximation ratio of 2.
Proof: Because each point has two connections to the lines at most, the dual variable of each point contributes

to two lines at most. Therefore, in the worst case, the number of opened lines equals to twice that of the optimal.
Factoring the relationship of the primal and dual programs, i.e., the primal solution is always greater than the dual
solution, we can easily show the performance ratio is at most 2.
Remark: This analysis is similar to the analysis of the primal-dual approximation for vertex cover.

However, even a simple greedy algorithm can achieve the same approximation ratio. It works as follows.
Starting from any un-serviced point client, open both the horizontal and vertical lines going through it, and use
them to service all the clients on it. Repeat this until all the clients are serviced. This shows the sophisticated
primal dual algorithm is not superb for this simple case.

4.3.2 Rectangular Client Case

Now we consider the case where the clients are rectangles with varying sizes. This case is more general and the
point case described above can be treated as a special case of it.
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N=4

Figure 4.5: A Worst Case.

Remark: This problem is also known as the rectangle stabbing problem and has been studied by various authors
in different contexts.

Problem Formulation

The formulation is slightly more complicated. Now, the facility lines (either horizontal or vertical) are specified
by the edge coordinates of the rectangular clients4. More importantly, each square client has more than two lines
going through it.

Again, we denote the line set by L = {l1, l2, l3, . . . , lN}. For each rectangular client, we specify them by the
labels of lines going through it. The modified IP is given by:

IP: min

N
∑

j=1

zj

s. t. ∀ client i,
∑

line k is on client i

zk ≥ 1

zk ∈ {0, 1} (4.8)

Again, by relaxing integer solutions to be positive reals, we have the relaxed LP problem:

LP: min

N
∑

j=1

zj

s. t. ∀ client i,
∑

line k is on client i

zk ≥ 1

zk ≥ 0 (4.9)

The corresponding DLP is given by:

4If the lines are on the edges, we could always move it to the boundary without breaking the covering relations.
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DLP: max

M
∑

i=1

αi

s. t. ∀ line j,
∑

client k is on line j

αk ≤ 1

αi ≥ 0 (4.10)

Primal-dual Algorithm and Performance Analysis

One crucial observation is that the number of serving lines for a rectangular client is not bounded. By reducing
this problem to a special set cover problem, the cardinality of each set can not be bounded. This is intuitively why,
as we show later, that even sophisticated algorithms, e.g., the Primal-dual schema based algorithm mentioned in
the introduction, can only achieve O(log n) performance ratio.

We still use a primal-dual method to solve the problem in the dual space first. Unlike the point case, where the
number of edges connecting each point to lines is fixed to two, in the rectangle case, the number of edges incident
to each rectangle varies.

We design a greedy algorithm to solve the dual problem. Again, we use the notion of time. All the dual
variables αi are initialized to 0. Then the algorithm raises all the dual variables at a uniform rate. When the sum
of αi of the clients on a line reaches 1, these lines are open and we freeze αi of these clients. These clients are
serviced by this open line. We then raise the unfrozen αi until we get the next set of tight edges. This process
iterates till all the clients are serviced.

Theorem 3: The Primal-dual Algorithm has an approximation ratio of log(n), where n is the number of
clients and the bound is tight.

Figure 4.6: A Tight Example.

Proof: The facility location problem with zero connection cost is a special case of the set cover problem. It
is well known that set cover approximated within a factor of logn using the primal-dual schema. In the example
shown in Fig. 4.6, we observe that the approximation ratio of our primal-dual algorithm is actually log(n). (The
primal dual algorithm will open the middle line first since the number of clients is the largest for this line. After
freezing the corresponding dual variables, only the dual variables on the upper and lower halves are unfrozen.
Then the algorithm opens the middle line of each half, and so on and so forth. This is why the output, the number
of lines picked is log(n).

In conclusion, for line facility serving clients problems, we looked into two cases. In the first step, we applied
the Primal-dual algorithm for a point client case. The primal dual algorithm was shown to have a tight approx-
imation ratio of 2, which can also be easily achieved by a simple greedy algorithm. An intuitive explanation is
that a point client can be serviced by at most two line facilities. In the dual setting, this means the dual variable
assigned to one point client can contribute to at most twice the opening costs. So the primal solution is bounded
by twice the dual solution, which gives 2 approximation result.
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We then studied the rectangular client case using the primal dual algorithm. Due to the fact that the number
of serving lines is not bounded, the approximation ratio is not bounded.

4.4 Comparison of Primal-dual Algorithm with Local Search Strategy

We implemented a simple local search algorithm and compared its performance with the primal dual algorithm
described above. We show that, although both algorithms are proven to be 3-approximation for the metric facility
location problem, the simple local search algorithm outperforms the primal dual algorithm in every problem
instance (without triangle inequality) that we tested.

4.4.1 Motivation

Facility location optimization has been the subject of extensive research. The objective is to open a subset of
facilities such that the total cost of opening the facilities plus the cost of serving the clients is minimized. Jain
and Vazirani [1] proposed a 3-factor approximation algorithm for the metric facility location problem using the
primal-dual schema. The triangle inequality constraint is essential for their algorithm to guarantee 3-factor ap-
proximation. As we have shown in the previous sections, without this constraint, the primal dual algorithm has
either the approximation ratio of cmax/cmin, where cmax and cmin are the maximum and minimum connection
costs respectively, or the approximation ratio of log(n). This implies the primal dual algorithm is not a constant-
factor approximation algorithm in general. Most recently, Arya et. al. [2] showed that a simple local search
algorithm when applied to MFL is 3-approximation, the same factor as the primal dual algorithm. This motivates
us to compare the performance of the two algorithms for general FL problems. Moreover, by running the local
search algorithm on the worst-case scenarios for the primal dual algorithm, one might get some insights into why
the primal dual algorithm performs so poorly in those cases. In the following, we will describe the local search
algorithm, and compare the performances of the primal dual algorithm with the local search algorithm on some
FL problem instances.

4.4.2 Local Search Algorithm

Local search is a very simple and yet powerful technique proposed by Kuehn and Hamburger [3] four decades ago,
and has been shown to exhibit good practical performance [4, 5]. The algorithm starts with any feasible solution
and then iteratively improves the solution by repeatedly moving to the best “neighbouring” feasible solution.
For the facility location problems, a “neighbouring” solution is defined as a solution obtained by either adding,
deleting or swapping facilities.

Although the basic idea of the local search algorithm is very simple, it is very hard to analyze its performance
theoretically. Most recently, Arya et. al. [2] provided a locality gap of 3 for the local search algorithm on metric
FL problems. This algorithm provides the same approximation ratio as the primal dual algorithm used for the
metric FL problems.

Algorithm

1. S ← an arbitrary feasible solution in S.

2. While ∃S′ ∈ β(S) such that cost(S ′) < cost(S), do S ← S ′.

3. return S.

In the above, β(S) is the “neighbourhood” of S that can be reached from S by one operation, namely adding,
dropping or swapping a facility.
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4.4.3 Empirical Results

We implemented a simple local search algorithm which randomly chooses an initial feasible solution as well
as operations. The stopping criteria is when some number of operations has been reached and results in no
improvement in the cost function. We compared the performance of this simple local search algorithm with
the primal dual algorithm on some general FL problem instances. For small problems, we also computed the
optimal solution by exhaustive search. Table 4.1 shows the results for some worst-case scenarios of the primal
dual algorithm. The first three are as in Fig. 4.1 and the last one is the same as in Fig. 4.6. The local search
algorithm finds optimal solutions in all these cases. Table 4.2 shows the results for some randomly generated data
sets. We only computed the optimal solutions for the cases with only 5 facilities, where exhaustive searching is
possible. For all the cases, the local search algorithm outperforms the primal dual algorithm, especially for large
problems. It is also interesting to note that for all the test cases, the local search algorithm was able to find the
known optimal solution. This shows the power of random search schema over the greedy approaches. The price
is the overhead in the running time: while the primal-dual algorithm guarantees to run in polynomial time, the
local search algorithm might take exponential time to converge.

Since the local search algorithm is implemented in Matlab while the primal dual algorithm is implemented in
C++, we are not reporting running times here. However, the local search algorithm runs much slower than the
primal dual algorithm. To meet the deadline, we weren’t able to obtain results for the last 2 cases with the local
search algorithm.

Problem Size Optimal Solution Primal-dual Local Search
2*5 25.01 160.005 25.01
2*7 105.02 405.01 105.02
2*8 24.002 606.001 24.002
5*62 2 1.5e+11 2

Table 4.1: Test Results on the worst-case scenarios of the primal dual algorithm.

4.5 Conclusion and Future Work

In this modelling camp, we have studied several variants of the facility location (FL) problem. Motivated by
the primal dual schema based algorithm applied to the metric version of FL that achieves constant (3) ratio
performance, we applied the same primal dual algorithm to these variants while relaxing the metric assumption,
i.e., triangle inequalities. The first problem is the case where the connection costs are within a certain range. We
show that the performance ratio of primal dual algorithm is bounded by the ratio of the upper and lower bounds
of the connection costs. The second problem is the line facility rectangular client case where the connection costs
are either 0 or∞. We show that when the clients can be further simplified as points, the primal dual algorithm
will have approximation ratio of 2, while in the general case, rectangular clients, the ratio is log(n). Then we
empirically compare a popular simple algorithm in practice, local search strategy, with the primal dual algorithm.
For all the tested examples, some difficult problem instances such as the worst case examples used in the analysis
of the two variants of FL, the local search algorithm outperforms the primal dual algorithm. This validates the
usages of local search in the common practice.

In our future work, we would like to investigate further along the following lines. For the bounded connection
cost case, we would like to study the performance of a generalized version of the primal dual algorithm. For the
line facility rectangular client case, we would like to investigate the possibility of designing a more sophisticated
primal dual algorithm for achieving constant approximation ratio.
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Problem Size Optimal Solution Primal-dual Local Search
5*20 610.1 1255.2 610.1

478.5 1069.4 478.5
749.4 1062.7 749.4
699.9 1056.7 699.9
538.1 811.9 538.1

20*30 / 1060 432.8
/ 1111.5 393.5
/ 1173.4 500.9
/ 1384.9 460.1
/ 1298 479.5

50*100 / 3602.9 740.2
/ 3411.6 682.9
/ 3812.3 801.1
/ 4401 776.6
/ 4521.9 864.7

100*200 / 6865.7 1134.3
/ 7666.5 1060.8
/ 6954.1 1157.6
/ 6749.1 1110.4
/ 7287.2 1137

300*400 / 15808.8 1137.4
/ 15186.8 1243.8
/ 15922.4 1154.1
/ 16088.7 /
/ 17977.1 /

Table 4.2: Test results on randomly generated data sets.
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