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FOREWORD BY THE PIMS DIRECTORThe annual PIMS Graduate Industrial Math Modelling Camp (GIMMC) is held in one of thePIMS universities as part of the PIMS Industrial Forum. It is part of PIMS ommitment to providingtraining for young mathematial sientists who are either pursing areers in aademia or in industry.The goal of the GIMMC is to provide experiene in the use of mathematial modelling as a problemsolving tool for graduate students in mathematis, applied mathematis, statistis and omputer siene.In addition to this it helps prepare them for the Industrial Problem Solving Workshop whih isthe other omponent of the PIMS Industrial Forum.At the workshop students work together in teams, under the supervision of invited mentors. Eah men-tor poses a problem arising from an industrial or engineering appliation and guides his or her team ofgraduate students through a modelling phase to a resolution.The Fourth GIMMC was held at the University of Vitoria, June 11{15, 2001. There were eight prob-lems posed, a reord, with a total of 56 students in attendane, another reord. The students mainlyame from all aross North Ameria with 16 from the United States. They were seleted from over 130appliants.My sinere appreiation and gratitude goes to everyone involved in this workshop, in partiular I wishto thank Chris Bose, the editor of these proeedings, the other organisers (Randy LeVeque, Huax-iong Huang, Mark Paulhus, Keith Promislow, Ian Frigaard) and mentors (Sergei Bespamyatnikh, JohnChadam, Ian Frigaard, Lisa Korf, Hedley Morris, Tim Myers, Miro Powojowski, Moshe Rosenfeld). Iam greatly looking foreward to the 2002 amp at Simon Fraser University.Dr. Nassif Ghoussoub, DiretorPai� Institute for the Mathematial Sienes
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EDITOR'S PREFACEFrom June 11 through June 15, 2001 a reord number of 56 graduate students gathered at theUniversity of Vitoria for the Fourth Annual PIMS Graduate Industrial Mathematial Modelling Camp{ the GIMMC-4. This year marked a signi�ant expansion of the Camp whih in previous years had beenlimited to approximately 40 students hosen mostly from the �ve PIMS Universities. The expansion wassuggested in reognition of the new role that PIMS is now playing on the broader Canadian mathematissene, and also in view of the reent expansion of PIMS south of the border to inlude the Universityof Washington as a sixth founding institution. By February of last year, the organizers of the ampwere struggling with the overwhelming response: more than 130 exellent appliations from all over theontinent, and even some from Europe! After the dust had settled on June 15, looking over our listof partiipating students we found that we had hosted students from 25 North Amerian Universities.Approximately one-third of our partiipants were from US institutions and the partiipation from withinCanada had expanded to inlude many students from entral Canada and the maritimes. The Camp,and it's senior sibling, the Industrial Problem Solving Workshop have indeed arrived as premier eventson the applied and industrial mathematis alendars throughout North Ameria.For those not yet familiar with the format of the amps or the industrial workshops let me say a fewwords about the organization, whih was typial. One the students got settled in, the week began byhaving eah of the aademi mentors give a short presentation desribing their sample problem to theassembled group. It takes a onsiderable amount of judgement, skill and e�ort to ome up with goodproblems for the amp, and this year we had eight exellent problems presented by our outstandingmentors. From Monday afternoon through Thursday evening, the individual workshop groups metunder the guidane of the aademi mentor. Typial ativities during this period inluded short letureson bakground material from the mentors, literature searhes, penil and paper alulations, work atthe omputers and so on. By Friday morning the groups were ready to present their �ndings (havingeleted one student to stay up all Thursday night preparing the group's presentation!) and shortlyafter I was given the formal writeups, whih appear more or less as I reeived them in the rest of thisdoument. While this may all sound fairly straightforward, in pratie it is an extremely intense weekfor all onerned { students, mentors and organizers. The best way to appreiate this is to look at a fewof the hapters whih follow, keeping in mind that they represent the work of perhaps seven or eightgraduate students having varied mathematial bakgrounds, working in groups with a minimal amountof interferene from the aademi mentor over a period of three and one-half days.An workshop of this size an only be suessful through the e�ort and skill of numerous personalitesboth on stage and behind the senes. First, as the bakbone of the Camp, and the prinipal ators soto speak, let me thank the mentors. They were:� Sergei Bespamyatnikh (UBC, Wathtower Plaement)� John Chadam (University of Pittsburgh, Portfolio Analysis)� Ian Frigaard (UBC, Metal Spray Casting)� Lisa Korf (University of Washington, Web Hosting Agreements)� Hedley Morris (San Jose State University, Imaging Problem)� Tim Myers (University of Capetown, S.A., Modelling Ie Aretion)� Miro Powojowski (Algorithmis Corp., Risk Neutral Measures)� Moshe Rosenfeld (University of Washington, Control of Streetlight Networks)Some of these names will be familiar to those who have been following the evolution of the PIMSindustrial program. Some were �rst-timers. All the mentors did outstanding work both leading up toand during the week, and I will never be able to thank them enough for their e�orts. This is mitigatedii



iiionly slightly by my suspiion that, in truth, they enjoyed themselves throroughly during the week andthey found the students to be a well-prepared, mathematially stimulating and energeti bunh.As for the stage-hands behind the senes, let me begin by thanking those in Vitoria who anwered myall for help with this event. Pauline van den Driesshe and Bill Reed ame forward to read over all thestudent �les during the seletion proess. Administrative and tehnial matters were, as usual, expertlyand heerfully handled by Kelly Choo, our systems administrator and the PIMS Web Manager, alongwith Timea Halmai, administrative assistant at the PIMS UVi site oÆe. Ariana Clapton, one of ourdepartmental seretaries, stepped in when the workload beame too great for the rest of us ombined.At some point it beame lear that we were not going to have enough borrowed omputers to dothe job. Eugeen Deen and his sta� at the Human and Soial Development Computer Laboratory bailedus out, providing expertly managed and timely aess to all of the mahinery and software that is soessential for this sort of event.Finally, I must thank Mar Paulhus. Mar has been, in one way or another, instrumental in everyGIMMC and IPSW I have been involved with and by extrapolation, I suspet with all of them. Whenthings go wrong, and they always do, Mar's wit and unappable nature make short work of the kindof problem us lesser mortals tend to get bogged down in. Although I was the loal organizer for theGIMMC-4, in truth, it was Mar who one again pulled all the strings.Christopher J. Bose, EditorDepartment of Mathematis and StatistisUniversity of Vitoria
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Chapter 1Loating Wathtowers in TerrainsPartiipants: Sergei Bespamyatnikh (Mentor), Peter Anderson, Adrian Driga, Leslie Fairbairn, JakyLi, Tatiana Marquez-Lago, Ling Zhao.PROBLEM STATEMENT: A problem of urrent interest to investigators in Computational Geom-etry is to position a number of vertial wathtowers above a polyhedral surfae suh that every pointon the surfae an be seen from the top of some tower. With towers of zero height, the related prob-lem of determining the minimum number of towers whih olletively over the surfae by visibilityhas been shown to be NP-hard. The basi measurement of problem omplexity is the number of faes(equivalently, the number of segments) needed to speify the surfae.Among all sets of k towers of �nite height whih permit every point of the surfae to be overed, weseek ones whose tallest tower is as short as possible. It is of some importane in the sequel that thenumber of towers is �xed in advane. Algorithms are presented to solve several di�erent versions of thisproblem.
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2 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINS1.1 IntrodutionWe onsider how to minimize the ommon height of k towers, while still providing unobstruted lines ofsight from the tops of the towers to eah point on a given polyhedral 'terrain.'Di�erently restrited ases of this problem are solved using new polynomial-time algorithms. Thesituations ontemplated involve general numbers k of towers, but only two-dimensional terrains onsistingof sequenes of non-vertial line segments in the plane joined at the ends. We denote by n the numberof segments in the terrain.The �rst algorithm produes an approximate optimum tower height aurate to within an arbitrarilysmall additive onstant. The running time estimate is polynomial in n and the reiproal of this onstant.The restrition for the seond algorithm is that the \loal visibility" regions of the towers mustolletively over the terrain. Suh a region onsists of an interval ontaining the base of its tower, andextends in either diretion as far as the �rst obstrution. Subjet to this restrition, we �nd an exatsolution with worst-ase running time O((n log(n))k).The third algorithm seeks solutions in whih any segment of the terrain is ompletely visible fromsome single tower. The algorithm produes an exat optimum relative to this seond restrition, andoperates in time O(n4k+1 + n6).A full version of this paper is available athttp://www.s.ub.a/~besp/towers.ps.gz1.2 Approximation Algorithm for 2D k-wathtower problemProblem (k-wathtower problem). Given a terrain P (polygonal line) and a positive integer k, �ndthe position of k towers Ti that an visually over the terrain P , and the height of the tallest tower, H�,has the property H� = minf maxfheight(Ti)j1 � i � kg j Ti; 1 � i � k; over Pg: (1.1)H� = H�(P; k) is the height of the optimal solution for the polygonal line P and the integer k (optimalheight for P ).Theorem 2.1 Let P be a 2D terrain without vertial lines and k be a positive integer. Let H� bethe optimal height for the orresponding k-wathtower problem. Then there is an algorithm suh that:1. 8 > 0, the algorithm solves the k-wathtower problem and �nds the approximately optimal heightH with H < H� + ;2. the algorithm has polynomial time omplexity in the number of segments of P , 1 , and X , theupper bound for the x axis.Proof. Consider the algorithm in Figure 1.1. Let S be a division of the interval [0; X ℄, with Æ; �; and �omputed by the algorithm. Initially, the problem is solved for the terrain P and only one wathtower.Let H1 be the optimal height for the single-wathtower problem for P . Clearly, H1 is an upper boundfor the optimal height of the k-wathtower problem for P .Let D = f0 = h1 < h2 < ::: < hm = H1g be a division of stride Æ for the interval [0; H1℄. Thealgorithm Approx �nds the smallest point, H , of the division D suh that there is a solution for P wherethe k towers have the height H , and their x-oordinates belong to the division S. The algorithm usesbinary searh to loate H .For eah point h of the division D onsidered by the binary searh a veri�ation algorithm alledVerify (Figure 1.2) is used to hek if a solution of height h an be found for the terrain P . The towersof this solution must be loated at x-oordinates that form a subset of S. This veri�ation algorithmonsiders all the possible ombinations of k distint x-oordinates from S and heks if the terrain Pan be overed visually from the top of the k towers of height h built at the urrently onsidered x-oordinates. The algorithm Cover deides if the k towers spei�ed as input over visually the terrain P .This is done by verifying that eah segment of P is visible from the k towers.



CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINS 3Algorithm ApproxInput P: terrain, k: number of towers, : positive errorOutput x = (x1, x2, ..., xk): the position of the k solution towers,H: the optimal height found.delta = /2alpha = the measure of the smallest angle among the aute angles formed bythe segments of the polygon line with the y axisepsilon = ( / 4) * tan( alpha )X = largest x o-ordinate of a polyline point (projX(P) = [0, X℄)S = { i * epsilon | i integer, i * epsilon <= X}H1 = OneTowerHeight( P ) //upper bound for the solution Hleft = 0right = int(H1 / delta)while (left <= right)mid = int( (left+right)/2 )h = mid * delta // urrent heightif Verify(P, k, S, h, x) thenright = mid-1elseleft = mid+1H = left * deltaFigure 1.1: Pseudo-ode for the approximation algorithmThe following Lemma is essential for the proof of laim 1.Lemma 2.1 Let P be a 2D terrain without vertial lines and k a positive integer. Let H� be theoptimal height for the orresponding k-wathtower problem and  a positive error. Then, the veri�ationalgorithm Verify returns \true" for all the heights h with h � H� + 2 .Proof of Lemma 2.1 Inside the algorithm Approx the following quantities are set:� Æ = 2 ,� � = the measure of the smallest angle among the aute angles formed by the segments of thepolygonal line with the y axis,� � = 4 � tan(�),� X = largest x-oordinate of a polygonal line point (projx(P ) = [0; X ℄),� S = fi� � ji integer; i� � � Xg.Let h; h � H� + 2 , be the height that the algorithm Verify is verifying. Consider the situationdepited in Figure 1.3. This situation (or a symmetri one) is guaranteed to our during the exeutionof Verify. The segment uu0 is a sub-segment of the polygonal line, uv is an optimal tower for P , andu0v0 is a tower of height h built at xS , the point of the division S losest to xopt. Beause the divisionS has the stride �, then s = abs(xopt � xS) < �: (1.2)The angle between uu0 and u0v0 is bigger than � (by de�nition of �); therefore, st = tan() � tan(�),and from this t � stan(�) < �tan(�) = 4 : (1.3)



4 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINSAlgorithm VerifyInput P: terrain, k: number of towers,S: vetor of divisions, h: height og towersOutput x = (x1, x2, ..., xk): the position of the k solution towersfor x = (x1, x2, ..., xk) in SxSx ... xS, with xi <> xj for i<>jif Cover( P, k, h, x) thenreturn truereturn false Figure 1.2: Pseudo-ode for the veri�ation algorithm
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XFigure 1.3: Optimal tower and approximation towerBeause h = t+H� + r � H� + 2 , it follows that r � 2 � t � 2 � 4 = 4 . Furthermore,tan(�) = sr < �� 4 = tan(�); (1.4)and, beause both angles are in (0; �2 ), it follows that � < �. Lemma 2.2 is used to omplete the proofof Lemma 2.1.Lemma 2.2 If � < � in the setting desribed above, then the �eld of view of tower u0v0 inludes the�eld of view of the optimal tower uv.Proof of Lemma 2.2 In the proof of this result, the term segment above terrain denotes a segmentthat does not ontain any point lying below the polygonal line.Let q be a point in the �eld of view of the optimal tower uv, and xq the x-oordinate of q. Considerthe situation from the proof of the Lemma. There are three ases: xq <= xopt, xopt < xq < xS , andxS � xq .Beause q is in the �eld of view of uv, then vq is a segment above the terrain in all ases. The segmentvv0 is also above terrain. If a tip of the terrain between the towers uv and u0v0 interset vv0, then thatregion of terrain will ontain a segment that forms with the y axis an angle smaller than � < �. Thisontradits the hoie of �. Using the same argument it an be shown that, in the �rst ase (Figure1.4), the segment v0q is above vq and vv0, and thus above terrain. From this, it follows that q is in the�eld of view of u0v0.When q is between the two towers, it must be visible from v0. Otherwise, a segment of the terrainforms an angle sharper than �, whih is impossible.
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Figure 1.4: Field of view of the optimal tower inluded in that of the approximation towerWhen xS � xq , beause u0v0 extend beyond the level of v, q must also be in the �eld of view of u0v0.This onludes the proof of the Lemma 2.2.Lemma 2.2 ensures that, for an h � H�+ 2 , the algorithm Verify �nds k towers of height h that areloated at loations from the division S and over visually the entire terrain (eah tower has a �eld ofview whih inludes the �eld of view of an optimal tower). This proves Lemma 2.1.Lemma 2.1 is used to prove laim 1 of the Theorem. When Approx �nishes, left identi�es thesmallest height for whih Verify returns \true", while right identi�es the largest height for whih Verifyfails. Clearly, hright + Æ = hleft. It is also true that hright < H� + 2 beause Verify fails for hright.Putting the two results together,hleft = hright + Æ < (H� + 2 ) + 2 = H� + ; (1.5)whih proves laim 1 of the Theorem.In order to prove the laim 2 of the Theorem, let Cover; Cverify ; and Capprox denote the omputa-tional omplexity of the three algorithms involved in the solution algorithm Approx.Cover = n, the number of segments of the polygonal line P beause the algorithm heks the visibilityof eah segment in onstant time. It is easy to see that,Cverify � jSjk � Cover = (X� )k � n = ( 4X�tan(�) )k � n; (1.6)where jSjk is an upper bound for the number of iterations performed by Verify.Approx applies the algorithm Verify for log(right) times; therefore,Capprox = log(right)� Cverify � log( 2H1 )� ( 4X�tan(�) )k � n: (1.7)Note that Capprox is upper bounded by a funtion linear in n and polynomial in 1 ; X; and tan(�).1.3 Conneted Visibility ProblemLet us reonsider the initial problem of optimizing the height of k wathtowers in two dimensions. Weintrodue an extra onstraint: eah wathtower will be responsible for seeing only a onneted regionsurrounding its base point. This onstraint ould arise if a guard did not wish to stay in onstantommuniation with other wathtowers in order to know what was ourring lose to his tower, or if we



6 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINSwanted to optimize visibility (as a guard will be able to see regions loser to his tower more easily thansetions further away). It will be shown in this paper that this method has time omplexity O((n logn)k),where n is the number of segments in the terrain.To treat the problem for k wathtowers, we divide our problem into k parts (onsidering individuallythe plaement of eah wathtower in its own domain - sine the one-wathtower ase an easily be solvedby linear programming). We need a poliy for hoosing the wathtowers' separate domains. To �nd thesedomains, we adjust their boundaries dynamially, moving the endpoints over the x-axis and onstrutingloally optimal on�gurations.In order to solve this, we will �rst develop a disretization of the x-axis based on inspetion of theverties of the terrain and the intersetion points of the upper envelope (whih is the lower limit ofvisibility of the whole terrain).Theorem 3.1 The optimal position of one wathtower in one domain an only be at a vertex of theterrain or an intersetion point in the upper envelope for that domain.Proof. By linear programming, we know that the only ritial points of the upper envelope will be atits intersetion points, and by inspetion, we know that the verties of the terrain are the points losestto the upper envelope (they are loal maxima within the terrain - and therefore the height needed tobuild a tower from the terrain to the upper envelope would be a loal minimum at eah of these verties).So, when plaing one wathtower in one domain, we need only onsider plaing it at a vertex of theterrain or of the upper envelope. This gives us a way to disretize the x-axis: let us all these points x1through to xN and divide the x-axis into intervals with x1; :::; xN as endpoints.Claim 3.1 N � 2n.Proof: Sine the upper envelope is onstruted only by extensions of the n segments of the terrain,it ould only have n possible di�erent setions (n di�erent slopes, or intersetion points). Therefore,N � n+ n = 2n.Claim 3.2 The portions of the terrain and of the derived upper envelope between onseutive divisionpoints are straight lines.Proof: This is a property of our hoie of intervals.De�nition: Let us denote by hx the minimum height of a single wathtower to whih all of theterrain from 0 through x is visible.Dynamis:Overall, in order to optimize the partitions of the terrain, we must examine how the height of a towerwill hange as we inrease the boundaries of the region it must guard. So, let us look at the simplestase: how will the height hange as the region inreases in one interval from xi�1 to xi.Lemma 3.1 As x (the boundary of our partition) inreases along a subinterval [xi�1 , xi℄, hx eitherdereases linearly or remains onstant.Case 1. If the slope of upper envelope segment is greater than that of the terrain segment, hx mustremain onstant.Proof. Sine we have no intersetion points or verties within the interval, and sine the height ofthe terrain is getting further away from the upper envelope, the endpoint x annot be a loation of atower.Case 2: If the slope of upper envelope segment is less than that of the terrain segment, and theterrain segment, inreased by a height of hopt (the optimal height up until xi�1) intersets with theupper envelope segment then, from this intersetion point until the endpoint xi, hx will derease with aslope of ST - SUE (slope of terrain minus slope of upper envelope) (Figure 1.5).To onstrut hx as x varies ontinuously over the entire terrain, we need only onsider at most 4npoints: all x1; : : : ; xN and all intersetion points de�ned in Case 2 of the above lemma. Hene ourproblem is disrete.The time omplexity of onstruting hx in this manner is O(n logn) - O(n) possible points to onsiderfor hx and within eah of the 4n possible intervals, the onstrution of the upper envelope is of order logn(sine to inrease x from xi�1 to xi, we need only onsider one extra segment in the upper envelope).
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x-axisFigure 1.6: Dynami partitioning for 2 wathtowers1.3.1 2 wathtower problemTo plae 2 wathtowers in the terrain, we will need to onsider two dynami regions instead of one. Theproposed approah is to let h1(x) be the dynami minimum height of tower 1 and h2(x) be that of tower2. Now, let the region of h1(x) inrease as x inreases (i.e., it grows from x = 0 to the right) and let theregion of h2(x) grow from x = xN to the left (Figure 1.6).Take the maxmin of h1 and h2. The x value of max/min(h1,h2) will be the best loation of thepartition of the terrain into two regions. When we know the loation of the partition, we an loate theposition of the wathtowers from our previous omputations and we know that the minimum height ofthese towers = max/min (h1, h2).Sine we are simply omputing two h(x), the order to time omplexity of the two wathtower problemis still O(n logn).1.3.2 k-wathtower problemAs in the 2-wathtower problem, we an simply onsidering dynami partitions again, but this timeonsider k dynami partitions and the heights h1; : : : ; hk assoiated with eah. We onsider these par-titions by �rst dividing the terrain into 2 partitions, then subdividing domain1 into 2 partitions, thensubdividing again in this manner until we have k partitions. Take the min/max of eah h within asubdivision, as we did for two wathtowers. This gives a method of time omplexity O((n logn)k).1.4 Colouring algorithm in 2D k-wathtower problemProblem(k-wathtower problem with whole segment visibility) Given a terrain P with n seg-ments and a positive integer k, �nd the loation of k towers suh that every segment is visible from atleast one of the tower and the maximum height of towers is minimize.We propose olouring algorithm for solving the problem above.The steps of this algorithm are as follows.
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F2Figure 1.8: Colouring1. Extend eah segment of the terrain to a omplete line (Figure 1.7).2. Introdue additionally all segments whose endpoints are verties of P and whih lie ompletelyabove P . Together with the lines drawn in step 1, these segments indue a partition of the regionof the plane above P . The sets of points on P visible to a point within suh a region depend onlyon the region - not upon the partiular point seleted. Therefore, the �nest partition of P induedby visibility an be ompletely haraterized by membership relative to a set of at most m = O(n2)intervals. Moreover, the smallest planar regions of the arrangement so indued are r = O(n4) innumber (Figure 1.8).3. Indexing the set of regions by a variable i varying over index set 1; :::; r, identify the set of terrainsegments visible to eah region. This an be aomplished by the visibility algorithm of Guibas etal. , whih runs in O(n) time.
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Figure 1.9: OptimizationIndex i Cover Segment (olouring)1 a,b1,b2,b3,,d,g2,i2,i32 a,b1,b2,b3,,d,e,f1,f2,g1,g2,i2,i3::: :::i b1,b2,b3,,d,e,f1,f2,g1,g2,h,i1,i2,i3::: :::Now for eah region, determine the minimum height of any tower with one endpoint on the bound-ary of that region and the other on the terrain. Eah of these minima an be determined by linearprogramming in O(n2) time.(Figure 1.9)Among all tops of towers whih ahieve the linear programming optimum within a given region,hoose the leftmost, rightmost, and highest. Let I be the set of all suh points, C the onvex hullof I , and L the set of extreme points of the lower boundary of C.This leads to an overall time omplexity of O(n6) for determining L. This determination involvesonly the terrain, and does not involve k.Next, onsider all k-subsets of L; there are C(jLj; k) = O(n4k) of these. Test eah k-subset todeide whether the union of the orresponding k olletions of visibility segments overs P . Foreah subset produing a over of P , determine the largest of the orresponding tower heightsinherited from Step 3 above. (This maximum tower height is assoiated with its originating k-subset.) After running through all feasible k-subsets, hoose the k-subset whih produes the leastmaximum height.Theorem 4.1 The method desribed above produes the desired optimal height for the k-wathtowerproblem with whole segment visibility in O(n4k+1 + n6) time and O(n4) spae.We an extend the olouring algorithm in order to solve a similar problem in three dimensions andalso ahieve polynomial running time.1.5 ConlusionsWe have introdued three algorithms for solving restrited versions of the k-wathtower problem. The�rst algorithm �nds an approximate solution for k-wathtower problem provided that the polygonal linedoes not ontain vertial segments. The solution found by the algorithm is guaranteed to be auratewithin a spei�ed additive error. This algorithm runs in polynomial time, and the time upper boundis proportional to the reiproal of the error. The seond algorithm solves the k-wathtower problem



10 CHAPTER 1. LOCATING WATCHTOWERS IN TERRAINSproblem by �nding the shortest k towers whose loal visibility regions over the entire terrain. Finally,the last algorithm solves the k-wathtower with whole segment visibility in two dimensions. This an beextended in three dimensions with polynomial running time.Referenes[1℄ L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms for visibilityand shortest path problems inside triangulated simple polygons, Algorithmia, 2(2):209{234, 1987



Chapter 2Problems in Portfolio AnalysisPartiipants: John Chadam (Mentor), Mehmet Atilla Begen, Ali Ghodsi Boushehri, Yuriy Kazmer-huk, Selly Kane, Viktoria Krupp, Eri Mahorro, Eva-Marie Nosal, Limei Sun.PROBLEM STATEMENT: The group onsidered several problems in portfolio analysis. In parti-ular, the group generated omputer odes for determining the optimal portfolio whih minimizes riskfor a given return. A data set was used to provide spei� examples with and without shorting. Inaddition, the group studied how to prie options on portfolios. Some spei� problems whih were ad-dressed inluding omparing the Blak and Sholes prie of European-style option in the Gaussian andnon-Gaussian ases. An Edgeworth expansion was used in the latter ase and the magnitude of theorretion was obtained for a spei� data set. Finally, the values of European put option on the sumof two assets were omputed diretly using a Monte-Carlo simulations and an Index approximation.

11



12 CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS2.1 Portfolio optimizationThe value p of a portfolio onsisting of N assets having unit pries Si; i = 1::N and a bond with valueB an be written as p = �1S1 + :::+ �NSN + bB;where the proportions �i and b satisfy P �i + b = 1.Let's introdue some de�nitions. At �rst, we onsider a portfolio without risk-free assets, i.e. b = 0in this ase. We all � a mean return on the portfolio and �2 a variane of return if:� = NXi=1 �iEiand �2 = NXi;j=1 �iVij�j = �TV �with Ei is the mean return of share Si, E[dSi=Si℄, and the matrix V is the ovariane of the returns,var[dSi=Si℄.We alulate the mean-variane of an optimized portfolio as a solution of the following problem:min �TV �subjet to the onstraints: NXi=1 �i = 1; NXi=1 �iEi = �In this formulation the �i ould be negative representing short-selling. This problem was solvedanalytially using Lagrange multipliers. The above problem without short selling requires that theproportions �i � 0 and the problem an only be solved numerially in this ase. For a data set onsistingof N = 8 risky assets both solutions are summarized in Figures 2.1 and 2.2 below.2.2 Normality hekThe basi assumption underlying the Blak and Sholes approah to option priing is that the underlyingasset values follow a Geomteri Brownian motion. Sine this may not be obtained in pratie for a singleasset, it is important to address the limitations of this GBM assumption. To this end we begin by applingstatistial tests to hek the normality of the returns. The Kolmogorov-Smirnov Goodness-of-Fit teststatisti was used and various graphs (QQplot, histogram) were produed. Based on the statistial testswherein the leverage point outliers were removed, seven shares were found to be normal and one foundto be non-normal. In partiular, the seventh share \FOSFX: Fidelity Overseas" did not have a normaldistribution. The goodness-of-�t result of the �fth share \FSAVX: Fidelity Selet Industrial Equipment"and the seventh share are shown as follows to illustrate this.> ks.gof(data$V8, dist='normal')One sample Kolmogorov-Smirnov Test of Composite Normalitydata: data$V5 ks = 0.041, p-value = 0. alternative hypothesis:True df is not the normal distn. with estimated parameterssample estimates:mean of x standard deviation of x0.06292663 1.611786
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Figure 2.1: Optimal portfolio with shorting I.

Figure 2.2: Optimal portfolio with shorting II.
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Figure 2.3: Optimal portfolio without shorting.> ks.gof(b, dist='normal')One sample Kolmogorov-Smirnov Test of Composite Normalitydata: b ks = 0.0786, p-value = 0.0127 alternative hypothesis:True df is not the normal distn. with estimated parameterssample estimates:mean of x standard deviation of x-0.0001885148 0.01173404The p-value for share `FSAVX' and `FOSFX' are 0.21 and 0.0127 respetively. Hene, with a signif-iane level of � = 0:05 we aept the null hypotheses Ho of normality assumption of share `FSAVX'(p � �) and rejet the assumption for share `FOSFX' (p � �).The deision to rejetHo in the ase of FOSFX is further supported by alulation of the standardizedskewness (-0.30189) and kurtosis (3.6242489) both of whih exeed the � = 0:05 ritial values. Thesewere the only data of the 8 found to be non-Gaussian.The two histograms (�gure 2.4 and �gure 2.5) draw a typial ontrast between the funds thatwere found to be suÆiently normally distributed and the skewed (hene non-Gaussian) distributionof FOSFX.
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Figure 2.4: The histogram for the share FSAVX.

Figure 2.5: The histogram for the share FOSFX.



16 CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS2.3 Monte-Carlo simulations of the stok prieswith appliation to the option priing2.3.1 One dimensional aseSuppose, the stok pries satisfy the following Stohasti Di�erential Equations:dSi = rSidt+ �iSidW (i)t ; for i = 1; ::; 8 (2.1)where r is the risk-free rate (or drift), �i is the standard deviation of stok prie return (or volatility) andfW (i)t g8i=1 is the 8-dimensional Brownian motion with partly orrelated omponents. Eah omponentis normally distributed with zero mean and the variane t. Here the growth rate �i for individual stoksSi are replaed by r to antiipate the risk-neutral evaluation of options. Using Ito`s lemma one �ndsthat stok pries follow a Geometri Brownian motion whih is expressed by:Si(t) = Si(0)ef(r��2i =2)t+�iW (i)t gOur task is to simulate stok pries using the representation above. Therefore, onsider:Si(t) = Si(0)ef(r��2i =2)t+�ipt�g (2.2)where � is N(0; 1). Numerially, we take a large number of samples (e.g. 100,000) of � and substitutethem into (2.2). Hene, we obtain a ertain number of samples of Si(t). Taking an average of them weget a simulated prie of the stok Si at the time moment t.Now, suppose we need to evaluate an initial value of a European put option with payo�max(E�S; 0)at time moment T , where E is the strike prie of the option and S is the stok prie at time T .Having already simulated stok prie S(T ) as above, we alulate the option prie by disounting thepayo� funtion: V = e�rTmax(E � S(T ); 0)This is a risk-neutral prie of the option.2.3.2 Monte-Carlo simulations of two orrelated stok priesMonte-Carlo simulation is a natural method for the priing of European-style ontrats that depend onmany underlying assets. Suppose, we have a European put option with the payo� max(E�(S1+S2); 0).In order to simulate the pries of two orrelated stoks whih satisfy the equations (2.1) we need tosimulate two orrelated normally distributed random variables �1 and �2 s.t.:E[�1�2℄ = �12We generate them using a Cholesky fatorization. Suppose, we have already generated unorrelatednormally distributed variables "1 and "2. We an use these variables to obtain variables with the givenorrelation through the transformation � =M" (2.3)where � and � are the olumns vetors with �i and �i in the ith row. The matrix M is speial and mustsatisfy MMT = �with � being the given orrelation matrix.It is easy to show that this transformation will work. From (2.3) we have��T =M""TMT :Taking expetations of eah entry in this matrix equation qivesE[��T ℄ =ME[""T ℄MT =MMT = �:The Cholesky fatorization gives one way of hoosing this deomposition. It results in a matrix Mthat is lower triangular.



CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS 172.4 Priing a European put on a portfolio on multi-assets: anindex approximationThe main problem of priing multi-asset options rests mainly on the fat that summing geometriBrownian motions does not neessarily give a GBM. In this part we assume that the portfolio and eahof the assets follow a geometri Brownian motion under the risk neutral probability whih will allowus to �nd The Blak and Sholes put European prie of the portfolio. More spei�ally we an obtainthe above by assuming that the proportions of the individual stoks in the portfolio are required tobe onstant over time as is in the ase of some mutual funds. We will in the �rst part prie a puton a portfolio of two assets and in the 2nd part we will generalize the method for a portfolio that hasmulti-asset (more than two). The result obtained will be ompared to those obtained by a diret MonteCarlo simulation of the full two-asset problem to hek the auray of our approximation. We havemade some �nanial assumptions in order to provide a real appliation of this method. In partiular,we will assume that the vetor of the portfolio returns will be Gaussian stohasti proess.2.4.1 Put option on a 2 assets PortfolioThe portfolio P is omposed of the sum of the two assets S1 and S2 that are orrelated. We assumethat for any i Si follows a geometri Brownian motion under the risk neutral probability P . Assumethat �1 = S1=(S1 + S2) and �2 = S2=(S1 + S2), whih we assume to be onstant. The last assumptionis onsistent with urrent mutual fund management poliy. Then it an be shown that this portfoliofollows geometri Brownian motion under the same risk neutral probability.dPtPt = rdt + �dWtfor � whih depends on �1 and �2 in the following way:� =q�21�21 + 2�12�1�2�1�2 + �22�22Therefore, the prie of this type of the option ould be obtained by applying the Blak and Sholesformula to a new set of parameters r; �; E; T and the initial prie S1(0) + S2(0). This prie is omparedto diret two-dimensional MC simulation (Setion 2.3.2) in Figures 2.6 and 2.7.2.4.2 Put Option on N assets portfolioLet's onsider the same assumptions as above. The vetor of return (dS1S1 ; :::; dSNSN ) is assumed to be aGaussian stohasti proess and for any i the unit stok prie Si satis�es (2.1). This yields that:� =vuut NXi=1 �2i �2i +Xi6=j �ij�i�j�i�jSo, the option prie ould be obtained by applying the same method as in 2-dimensional ase.2.5 Priing a non-Gaussian distributed shareThe strong assumption in Blak-Sholes priing that data follows a geometri Brownian motion has beensuggested as an explanation for the di�erenes between the model pries and market pries. In partiular,beause the assumption of geometri Brownian motion does not hold in many ases, it is desirable toadjust the model for suh ases. To do this, we approximate the underlying (true) distribution withthe lognormal (approximate) distribution and add orretion terms. The orretion terms are foundfrom a series expansion, alled the Edgeworth series expansion, of the given distribution in terms of the
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Figure 2.6: Comparison of Monte-Carlo method and analytial approximation.

Figure 2.7: Error between two methods.



CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS 19lognormal distribution (similar to a Taylor series expansion). It has oeÆients that are simple funtionsof the moments of the true and approximating distributions. As we use only the �rst three adjustmentvalues (whih depend on variane, skewness, and kurtosis), our results are still approximate but theyshould apture most of the inuene of the underlying distribution on the option priing.Denote the true probability distribution by F(s) and the approximate lognormal distribution by A(s)and assume that dA(s)/ds = a(s) and dF(s)/ds = f(s) exist, i.e. that the distributions have ontinuousdensity funtions.The �rst four umulants an be found to be [1, p.350℄K1(F ) = �1(F ); K2(F ) = �2(F );K3(F ) = �3(F ); K4(F ) = �4(F )� 3�2(F )2where �j(F ) = Z 1�1 Sjf(S)dSis the jth moment of distribution F and�j = Z 1�1(S � �1(F ))jf(S)dSis the jth entral moment of distribution FThe �rst umulant is the mean, the seond is the variane, the third is a measure of skewness, andthe fourth is a measure of kurtosis. Analogous notation is used for moments and umulants of A.The Edgeworth expansion for f(s) in terms of a(s) an be proven to be [1, p.350℄f(S) = a(S) + K2(F )�K2(A)2! d2a(S)dS2 � K3(F )�K3(A)3! d3a(S)dS3 ++ ((K4(F )�K4(A)) + 3(K2(F )�K2(A))2)4! d4a(S)dS4 + "(S)where K1(A) � K1(F ) and "(S) is the residual error.Consider a put option with maturity time t (in years), strike prie E, and underlying stok value ofS(0) at time 0. Then the value for the put option, P (F ) isP (F ) = e�rt Z E0 (E � S)f(S)dSAs we have seen, FOSFX (7th olumn) does not follow geometri Brownian motion. We apply themethod outlined above to �nd the value for the put option S(0) = 46:1, r = 0:06, and t = 1=3 (4months).We are given L = 85 is the duration (in business days) of the put option being onsidered andN = 170 is the number of days for whih daily return data is available in the form f4SiSi gi=1���169. Fromthis format the data were transformed to the form fSigi=1���N . That is to say, the data format wasonverted from the daily return rate f�SiSi gi=1���N to the daily underlying asset value fSigi=1���N wherethe initial asset prie S1 = 46:1 on the orresponding date was available at http://www.�delity.om.A seond transformation was made to failitate the estimation of the umulants of the \true" distri-bution whih will be based on the approximating lognormal distribution typial of a pure GBM optionpriing sheme: the data was onverted from fSigi=1���N to flog Si+LSi gi=1���L.From this \transformed data" the sample moments were estimated by�1(F ) � 1L LXi=1 logSi+LSi



20 CHAPTER 2. PROBLEMS IN PORTFOLIO ANALYSIS�J(F ) � 1L LXi=1 [log(Si+LSi )� �1(F )℄JNote: the parameters (�; �2) of the approximating lognormal distribution are estimated by (�̂; �̂2) usingthe original data f4SiSi gi=1���N in the following manner:�2 � 252�̂2dailywhere �̂2daily � 1N � 1 NXi=1(4SiSi � �̂)and �̂ = 1N NXi=1 4SiSiValues used were found as follows:�1(F ) = ln(S0) + rta(S) = 1S�p2�te�(log(S)�(log(�1(A))��2t2 ))2=(2�2t)The results are given in Table 2.1.Strike prie 35 40 45 50 55Blak-Sholes 0.004764 0.14547 1.140137 3.855774 8.002353No orretion terms 0.003874 0.132113 1.099248 3.815515 7.984549With orretion terms 0.00360 0.12612563 1.069307851 3.75421277 7.90624269Table 2.1: European Put Option Prie of Stok7 on Sep 1st.To partially justify dropping the error, we noted that the adjustment terms beome almost negligible.For example, for K = 55, the �rst put given by the lognormal approximation was 7.98 dollars, the �rstorretion term was 7.84 ents, the seond was 0.00821 ents, and the third orretion term was only0.00198 ents.2.6 ConlusionsThe group studied two problems in portfolio analysis - to �nd the mean-variane portfolio whih min-imizes risk for a presribed return and to approximate orretions to the Blak-Sholes-Merton priefor options due to non-Gaussian e�ets. A solution for the �rst problem was found with and withoutshorting as well as with and without inlusion of a riskless asset in the portfolio. The seond problem isof interest beause in pratie most assests do not evolve aording to a log-normal proess and, even ifthey do, the sum of suh proesses (a portfolio) does not. Using an Edgeworth expansion we alulatethe orretion terms for a European put option on a single non-Gaussian asset. In addition we omputethe values for a European put on the sum of two log-normal asset using an `index' approximation. Thisis ompared to values omputed diretly using Monte-Carlo tehniques. It would be intersting to applythe Edgeworth expansion methods to this latter ase.
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Chapter 3Modelling a Metal Spray FormingProessPartiipants: Ian Frigaard (Mentor), Mariana Carraso Teja, John Harlim, Theodore Kolokolnikov,Melvin Leok, Allan Majdana, Matthias M�uk, Jason Slemons, and Qutaibeh Katatbeh.PROBLEM STATEMENT: Spray-forming is a metal manufaturing proess whih is apable ofproduing large bulk deposits of various metal alloys. With areful ontrol, rapidly solidi�ed near-net shape deposits an be produed whih have signi�antly improved mirostrutural and mehanialproperties. In the billet spray-forming proess a molten metal stream is �rst atomized by high speedgas jets and is then deposited onto a irular olletor plate. The olletor plate is positioned somedistane from the atomizer, it rotates about a vertial axis and is withdrawn slowly downwards at aontrolled speed. Usually, the metal spray is direted in towards the rotational axis and osillates, soas to distribute the metal in a presribed way. The main objetive of this report is to model the billetgrowth mathematially and predit the dynami features.
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CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESS 233.1 IntrodutionSpray forming proesses for metals involve the atomizing of a molten metal stream by means of highspeed gas jets. The atomized metal is then sprayed by the jets and olleted below on a disk, whihis both rotating and moving vertially. This spraying is ontinued, so as to produe desirable shapes,known as billets. Ideally the billet will be ylindrial, with minimal deviations from this shape beingtolerated as part of the forming proess.In this report, we present a mathematial model based on onservation laws, whih are used to derivethe equation of evolution of the billet surfae. Sine the key ontrol parameter involved in the proessis the veloity of the olletion plate, we try to determine the shape of the surfae by ontrolling thisveloity and also by attempting to approximate the spray distribution leaving the atomizer. Betweenthese two parameters, a reasonable model has been developed.A shemati representation of the spray-form billet prodution is shown in Figure 3.1. The moltenmetal spreads rapidly towards the at olletor disk. This disk rotates about a vertial axis and graduallymoves downwards, at a ontrollable veloity.

Figure 3.1: Shemati of a billet spray forming proess.3.2 Mathematial ModelThe analysis of this problem is based on the onservation of mass on the surfae of the billet. Namely,the rate of mass deposition per time unit on some arbitrary element Â of the billet surfae is simplyequal to the mass ux through the surfae elementZÂ ~̂vs�̂dâ = � ZÂ b~G � ~ndâ;where b~G is a direted mass ux, v̂s is the veloity of the surfae in the diretion of the outward normal,~n, �̂ is the density of billet, and all \hatted" variables are dimensional quantities. By representing thesurfae of the solidi�ed billet as a level set b~F �~̂x; t̂� = 0;where b~F : R3 � R+ ! R, we obtain the following relation for the normal to the surfae~n = brb~F����brb~F ���� ;



24 CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESSwhere r = r~̂x for notational simpliity.Furthermore, the time rate of hange of b~F is given by� b~F�t̂ = �brb~F � ddt̂ ~̂x = � ~̂vs ����brb~F ���� ;and substituting, we obtain the equationZÂ�� b~F=�t̂����brb~F ���� �̂dâ = � ZÂ b~G � brb~F����brb~F ����dâ:Sine Â is arbitrary, and by evoking the ontinuity of b~F , we obtain the equivalent di�erential equation� b~F�t̂ �̂ = b~G � b~rb~F :In general, the mass ux expression b~G will introdue a time delay, but as the spatial sales are smallrelative to the veloity of the atomized metal jet, we will neglet the time lag between the atomizationand the deposition event. Furthermore, this allows us to assume that dispersion of the gas jet is small,and to good approximation, the ross-setional distribution of partiles in the jet in the absene ofdeposition is independent of the distane from the nozzle.The high shear ow assoiated with the atomization yields a ballisti trajetory for the metal jet,and we will assume that deposition ours at the �rst intersetion of the metal jet with the surfae of thebillet. If we assume that the surfae is onvex, then the point of �rst intersetion an be identi�ed bythe sign of the b~G � b~rb~F term, and the non-deposition on the point of seond intersetion an be realizedby a Heaviside funtion multiplying the b~G � b~rb~F term. The \shadow" e�ets have not been onsideredin the numerial analysis.Assume a radially symmetri distribution of mass ux, ĝ(r̂0), with respet to the spray diretion ~̂k0of the atomizer nozzle suh that Z 2�0 Z 10 ĝ (r̂0) r̂0dr̂0d� = 1;where (r0; �0; z0) refers to the oordinate system attahed to the atomizer. Let ~̂xa(t̂) = R!̂t̂(R̂a; 0; ẑa)Tbe the position of the spray at time t̂, where R!̂t̂ is the rotation matrix about z1�axis at angle !̂t̂. Withthis notation the mass ux vetor �eld reads~̂x1 7! b~G1 �~̂x1; t̂� = _M �t̂� ĝ������~̂x1 �~xa(t̂)�� b~k0(t̂)����� b~k0(t̂);where _M(t̂) is the mass ow rate from the nozzle and b~k0(t̂) = R!̂t̂(� sin(�(t̂)); 0;� os(�(t̂)))T is thespray diretion with a delination angle �(t̂). We sale the problem using the following dimensionless



CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESS 25variables ~̂x = R̂0~xb~F = R̂0 ~Fb~G = _M0�R̂20 ~GÛ0 = _M0^̂��R̂20~̂U = Û0~u(t)T̂0 = 2�̂!where R̂0 is the desired radius of the billet, Û0 is a harateristi withdrawal veloity of the plate, andT̂0 was saled relative to the rotation period of the billet. This orresponds to taking a timesale onwhih all transient surfae movement should be observable.In the stationary billet oordinates with the saled variables, the equation is given by� ~F�t̂ = � u � ~F�z1 + _M (t) g (r0)~k0 +O�Ra!Vs;0 �! � r~F ; (3.1)where the oeÆient � = 2�!R̂U0 orresponds to the ratio of time sales in the problem.There are two time sales in the problem: one for the rotation of the billet, and the other for thevertial growth of the billet. The order of the rotation time sale is muh smaller than that of the growthtime sale. The resulting equations have been saled using the rotation period, and the results we areinterested in are on the time sale of the billet growth. In order to ompare e�ets, the equations areaveraged over the rotation time sale.Let � = �t be the saled rotation period, where � is small positive onstant as previously de�ned.This new time sale, �, is on the order of the billet growth. Therefore, all parameters in the problemare of the same order, and hene, an be ompared. The resulting equation is� ~F�� = u(�) � ~F�z1 + � _M(�)�~g� � r~F ; (3.2)where �~g = 1T R T0 g(r)~kdt, is the time averaged distribution of the mass ux, and _M(t) and u(t) arereplaed by _M(�) and u(�), respetively. Converting to ylindrial-polar oordinates, expanding theinner produt, and assuming that the problem beomes symmetri with respet to the z1�axis after theaveraging proess, i.e. ~F (r; �; z1; t) = ~F (r; z1; t), the resulting equation is� ~F�� = u(�) � ~F�z1 + _M(�) �gr � ~F�r + �gz1 � ~F�z1! ; (3.3)To help predit the behavior of the surfae evolution, the harateristis of the di�erential equation (3.3)are examined. The harateristi equations aredrd� = � _M(�) �gr(r; z1)dz1d� = � _M(�) �gz1(r; z1)� u(�) (3.4)The assumption of ballisti spraying, together with the ontinuity of the mass ux, yields�grdr + �gz1dz1 = 0 (3.5)



26 CHAPTER 3. MODELLING A METAL SPRAY FORMING PROCESSLinear analysis of the system (3.3) in addition to equation (3.5) determines that there are at least twosaddle points on the z1�axis. Only one of these equilibrium points is important to the behavior of thebillet growth, as any others are physially loated inside of the billet. From equation (3.3), the saddlepoint is determined by the following ondition�gz1(0; z1) = �� (3.6)where � = u(�)_M(�) : (3.7)After non-dimensionalizing our variables, we �nd that � = 1 orresponds to the required billet radiuswhih, after salings, is 1.Phase plane analysis of the system shows that a steady state distribution is attainable, and that alltrajetories eventually lead to this steady state. These results motivate the analysis of the steady stateequation, whih an be derived from (3.3), by making the assumption that F (r; z; �) = z + f(r; �). Thesteady state equation is found by eliminating all time dependene from the above assumptiondfdr = �+ �gz�gr : (3.8)The subsequent numerial simulations are based on the solution of equation (3.8).3.3 ResultsTo see a dependene of the the shape of a stable billet on�guration on the (saled) withdrawl veloity �we �rst restrit ourselves to the ase of a single delination angle � = 300 (Fig. 3.2a), and with gaussiandistribution of the material within this ray. First we ompute the vetor �eld �g of the mass ux averagedover the rotation about the vertial axis and use that as input to ompute the solutions of (3.8) for steadybillet formations for several values of �. Sine �gr(0; f) = 0, the initial onditions f(0) = f0 needed forthe numerial integration of (3.8) are found by solving the equation (3.6).The averaged vetor �eld �g and the urves are plotted in Fig. 3.2a. The diretion of the enter ofthe mass ray is also indiated in the �gure. Note that for small veloities (say � � 2) the radius rbof the billet is determined by the uto� of the vetor �eld �g. In this ase, �r2b � 1 as expeted. For� = 3; 4 a big amount of mass annot be deposited on the surfae whih results in a breakdown of massonservation. This is observed in Fig. 3.3.Note that for � = 1 the radius of the billet is approximately rb = 1 whih is onsistent with oursalings. Further we observe that for billets with radius rb � 0:9 the surfae is onave at the enterwhen � = 300. This is undesirable beause it reates non-uniformities inside the billet.This motivated us to onsider other angles � (Fig. 3.2b) as well as sanning over a setor with theray (Fig. 3.4). From now on we restrit our attention to � = 1 whih guarantees the required billetradius rb = 1 (in saled variables).Fig. 3.2b shows di�erent shapes orresponding to di�erent angles � (no sanning). We observe thatat a ritial angle of about 400 the billet surfae is hanging from a onvex to a onave shape at theenter. However, in industrial appliations an angle of 300 is usually used rather than a relatively shallowangle of 400 (this is to avoid the slippage of material past the surfae of the billet).To ompensate a onave shape for an angle of 300, we simulated the sanning over a setor [�1 =300; �2℄ for several values of �2. Fig. 3.4a shows the resulting vetor �eld �g and the resulting billet shapewith �1 = 300; �2 = 450. Fig. 3.4b shows di�erent billet shapes for a �xed �1 = 300 and �2 as indiated.As expeted, for �2 large enough (about 400), the averaging of the mass ux over this setor insuresonvexity of the billet. For a very large spread of the setor (say �2 = 450) the plateau on top of thebillet is shrinking.Our analysis of the spraying proess made us understand how the various parameters inuene theshape of the billet. For example, within our model it is possible to produe billets of desired radius.
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Chapter 4Web Hosting Servie LevelAgreementPartiipants: Lisa Korf (Mentor), Monia Cojoaru, Yashar Ganjali, Seungwon Jeon, Ramin Moham-madalikhani, Carmeliza Navasa, Alberto Nettel, Asa Paker, Sarah SumnerPROBLEM STATEMENT: In this paper we propose a model for measuring the quality of servie(QoS) in a Web-hosting faility. We assume that there is an agreement between the provider and a lient(or ustomer), regarding the prie of di�erent levels of servie, known as servie level agreement (SLA).The lient we refer to is a ompany.
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Figure 4.1: Servie Level AgreementThe Web-server provides the spae for the Web-pages, text douments, audio and video �les et.of the ustomer. Eah ustomer has a number of users that request aess to the douments on theWeb-server. The Web-server has to provide a servie that meets the requirements of the SLA (Figure 4).The SLA states that some QoS measurement lies within some bound for a given perentage of requestsaveraged over a given long period of time. 29



30 CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT4.1 The frameworkIn a very simpli�ed model, a Web-server is onneted to a user via a link with a known bandwidth. Theuser sends a sequene of requests for the �les loated on the server (Figure 4.1 (A)). The Web-serverdeides whih requests it is going to serve and simply disards all other requests. Other than hoosingwhih requests to serve, there is another important deision whih the server has to make and that ishow to alloate its resoures (the bandwidth, CPU time, and so on) to the requests whih are going tobe served.
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Figure 4.2: Models of networkIn reality, usually the server and the user(s) are onneted throught a series of intermediate routersand the quality of servie provided by the Web-server to the user is a�eted by the quality of servieprovided by those routers. In a more realisti model we should also onsider how the quality of servieprovided by the Web-server is a�eted by the quality of servie provided by the intermediate routers(Figure 4.1 (B)). Some important parameters here are the average delay of messages, the loss rate,the throughput, and so on. For simpliity we ould assume that the server is onneted to a singlerouter with known parameters. Finally, we an onsider a model whih seems to be the losest to thereal networks in whih the Web-server is onneted to a number of routers eah providing a (possibly)di�erent quality of servie (Figure 4.1 (C)). The Web-server an deide (based on the quality of serviethe routers are supposed to provide) whih of the adjaent routers should be used to serve a spei�request. In this paper we are treating only the senario in Figure 4.1A).4.2 DynamisIn this setion we propose a model for the dynamis of the ativities provided by a Web-hosting failityunder a ertain SLA. We derive from here a ontrolled optimization problem for maximizing the revenueof the provider subjet to penalties. Our model will be a disrete time one. The state variable is thenumber of requests of di�erent lasses for onneting to the network.Denote by [0; T ℄ the time interval for the problem with the step �t. In the previous setion we de-sribed how the Web-hosting faility funtions. Consider the system with a known maximum bandwidthC. User requests arrive at random times and a request will take a ertain response time ( RT ) to beserved. We will assume that the arriving requests belong to di�erent lasses, whih are indexed fromi 2 f0; :::; Jg. For simpliity, we will onsider only two lasses.



CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT 314.2.1 Notation1. Let X it be the number of requests of a ertain lass i at the moment t, where i 2 f0; ::; Jg: Wedi�erentiate between the number of requests being served at the moment t and the ones that arewaiting in the queue. Therefore, let us de�neX it = � X i;1t = f the number of requests in waitinggX i;2t = f the number of requests being servedg2. To be able to model the QoS we need to keep trak of how many requests have been served andhow many inoming requests have initiated at a given moment of time t, arbitrarily �xed in [0; T ℄.Denote by bit the number of arriving requests and by sit the number of served requests at themoment t.3. Denote by uit a deision ontrol to alloate a ertain amount of bandwidth at time t for a requestof lass i. The ontrol is de�ned as followsuit = � ui;1t = f the number of ativated requests of lass i served at t gui;2t = f the number of rejeted requests of lass i at tg4. Denote by rit the resulting revenue per request of lass i at moment t.4.2.2 General assumptions1. In eah interval of time, the number of new requests onsidered for servie is variable (not nees-sarily 1).2. The assignment of bandwidths ours at the starting point of eah time unit.3. The amount of bandwidth alloated to eah request remains �xed in our model, until the requestis ompletely served.4. The alloation poliy adopted here is that to eah inoming request of lass i a ertain amount ofbandwidth is assigned, up to the maximum apaity possible for lass i, Ci.5. Unserved requests are lost without further impat on the system.4.2.3 Equations of the dynamisWe an formulate now the equations desribing the dynamis of the system passing from one generistate t� 1 to the next state t as followsX it = X it�1 + � �1 �11 0 �uit + � bit�sit � (4.1)The �rst row of the equation (4.1) represents the dynamis of the requests of lass i in waiting and theseond row represents the dynamis of the requests of the same lass being served.4.2.4 Optimality equationThe SLA states that some QoS measurement lie within some bound (Bi) for a given perentage ofrequests averaged over a given long period of time. Bi represents the SLA for the i-th lass of requests.The QoS is de�ned as a funtion of the deision at time t ( i.e. uit) and the state of the system at thatmoment (X it). Whenever the QoS is out of bounds, a penalty applies to the provider, thus diminishingthe revenue. One may assume that there is a known threshold R for the number of requests being served.



32 CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENTTherefore we an write QoSit(uit; X it) = Biui;2t + BiR X i;2t + �iX i;1t ; and�i[Ef 1T TXt=1QoSit(uit; X it)�Big℄+where the last expression represents the penalties appliable to the provider whenever the QoS is out ofbound. The hoie of the numbers �i needs to be made suh that the penalty expression approximatesthe onstraint set in the SLA.Now we an formulate a �nite horizon stohasti optimal ontrol problem in disrete-time to maximizethe total expeted reward,maxut TXt=1 Efrituitg �Xi �i" 1T Ef TXt=1[QoSit �Bi℄+g#+ TXt=1 �i"Xi CiX it � C#subjet to the dynamis X it = X it�1 + � �1 �11 0 �uit + � bit�sit �where the state vetor X it 2 RJ+1�RJ+1, the ontrol uit 2 RJ+1�RJ+1, (QoS) is de�ned as above, �iis a proportionality onstant orresponding to the bandwidth onstraint of eah lass i and rit representsthe revenue for the lass i at time t. We note that Ci de�ned previously, is the maximum bandwidthapaity possible for the lass i and it is independent of time.We assume that there are admissible ontrols u that transfer the system from X1 to XT and amongstthis subset of admissible ontrols there is a ontrol that maximizes the expeted reward. Suh a ontrolwill be alled an optimal ontrol u�. Ultimately, we look for the values of the optimal ontrol and themaximum reward.4.3 Dynami Programming AlgorithmA possible approah to solve the stohasti optimal ontrol problem is the dynami programming teh-nique ([1℄). The idea is to assign a value funtion Vu(x0) for eah poliy u suh that it is equal to thetotal expeted reward, Vu(X1) = Ef TXt=1 t(Xt�1; ut) + �(XT )g (4.2)where �(XT ) is the terminal reward. The dynami programming method allows us to onstrut theoptimal poliy u� and, in onsequene, alulate the optimal expeted reward V (X1), whereV (X1) = maxu Ef TXt=1 t(Xt�1; ut) + �(XT )g (4.3)We assume a �nite state spae S, a �nite ontrol spae A, and a poliy ut(ht) in terms of the historyor path ht = (st�1; at�1; s), s 2 S and at�1 2 At.The Algorithm:For eah time t we an assign a \ost-to-go" funtionVt(ht) = t(st�1; ut) +Xj2S pt(st = jjst�1; at)Vt+1(ht; at; j) (4.4)



CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT 33where j is a possible state at time t� 1. The transition probability pt(s = jjst�1; at) is the probabilityof going from state st�1 at time t� 1 to state j at time t. The optimal ontrol at t is the minimizer of(4.4), i.e. u�t 2 argmaxa2Ant(xt�1; at) +Xj2S pt(jjst�1; at)Vt+1(ht; at; j)o:We now the desribe the algorithm:1. Set t = T and V (hT ) = �T (sT ) for all histories hT2. Let t! t� 1. For eah ht,u�t 2 argmaxa2Ant(st�1; a) +Xj2S pt(jjst�1; a)Vt+1(ht; a; j)oVt(ht) = t(st�1; u�t ) +Xj2S pt(jjst�1; u�t )Vt+1(st; u�t ; j)3. Go to step 2 when t = 2.4.4 The Simulation ModelIn the model of Web server traÆ outlined in Setion 4.2, knowledge of the distribution of the numberof new requests and the distribution of the number of ompleted requests within a given time periodis required. It has been assumed that request arrivals follow a Poisson proess, but simulations wereperformed to give estimates of the distribution of ompleted requests. It would also be interestingto know the behaviour of the system when ertain key parameters, suh as bandwidth available fortransmission, are suddenly inreased during operation. Details of the simulated system are as follows:Requests arrive at the server following a Poisson proess with a mean inter-arrival time of �A seonds.There are J + 1 lasses of requests, flass(0);. . . ,lass(J)g: These lasses might represent requests forvarious types of data, suh as video, audio, graphis or text. The probability that a given request is oftype lass(i) is pi: The data being requested is simply a �le. The sizes of the requested �les are assumedto follow an exponential distribution, where the mean �le size for requests of lass i is �i bytes. Allrequests of lass(i) are assumed to require Bi bytes/seond of bandwidth for transmission. The totaloutput bandwidth available for use by the server is BT :In a given time period, more requests may arrive than the system is apable of serving. Unservedrequests are queued in order of arrival. When a request arrives at the server, if there is enough outputbandwidth available to immediately serve it, and there are no other requests in the queue, then servieof the request ommenes.Servie time for a request is given by �le size divided by the bandwidth required. If a request mustenter the queue, it must wait for all preeding requests in the queue to be served �rst, and then (possiblyeven longer) for there to be suÆient available transmission bandwidth, before its servie will begin. Thesimulation model is illustrated in Figure 4.3.4.5 Simulation ResultsTwo phenomena were investigated by simulation: the e�et of inreasing total bandwidth on the waitingtime in the queue, and the number of requests whose servie is ompleted in a given time period. Theresults may be found in Figures 4.4, 4.5 and 4.6.
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2. Received requests are queued if necessary.
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1. New requests are received by the server.

Figure 4.3: Shemati of the simulated web server.
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Figure 4.4: Average request waiting times versus available bandwidth. There were three di�erent requestlasses, so N = 3: The parameter values were �A = 1; �0 = 10, �1 = 30; �2 = 60; B0 = 1; B1 = 2;B2 = 3; p0 = 0:25; p1 = 0:25; p2 = 0:5; and BT is what is plotted along the x-axis. For eah value ofBT the simulation was run until 10,000 requests were served.
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Figure 4.5: Waiting time of requests versus arrival time. In this simulation, BT for the �rst 5000 requestswas 24, then BT was inreased to 25. There were three lasses, so N = 3: The parameter values were�A = 1; �0 = 10, �1 = 20; �2 = 30; B0 = 1; B1 = 2; B2 = 3; p0 = 0:25; p1 = 0:25; and p2 = 0:5:
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Figure 4.6: Histogram of the number of requests ompleted in time intervals of 5 seonds. This simulationwas run until 10,000 requests were served. There were three di�erent request lasses, so N = 3: Theparameter values were �A = 1; �0 = 10, �1 = 20; �2 = 30; B0 = 1; B1 = 2; B2 = 3; p0 = 0:25; p1 = 0:25;p2 = 0:5; and BT = 25:



36 CHAPTER 4. WEB HOSTING SERVICE LEVEL AGREEMENT4.6 Future workEstablishing a measure for the quality of servie (QoS), for a Web hosting faility, is an extremely up-to-date problem and the authors have only approahed it here by means of a very simple model. As statedin the beginning, there are a lot of possible ways to enlarge the spetrum of the model. We outline nextsome of these.� To use dynami programming tehniques to solve the stohasti optimal ontrol problem.� To further investigate the distribution of �le sizes from real data.� To improve the model by reformulating the penalty funtion and the mathematial expression ofthe (QoS).� To inlude more omplex networks by extending the onepts and dimensionality of the problem.Figure 4.7 shows the number of requests for �les of di�erent sizes on an aademi Web-server1. Thishistogram shows that assuming that the size of requests has an exponential distribution is a realistiassumption.
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Figure 4.7: Real data �le sizes distributionReferenes[1℄ BERTSEKAS, D., Dynami Programming and Stohasti Control, New York: Aademi Press,1976[2℄ CHANG, Y-C., GUO, X., KIMBREL, T. and KING, A., Optimal alloation poliies for Web hosting,IBM T.J. Watson Researh Centre, P.O. Box 704, NY 10598[3℄ NORTEL and BAY NETWORKS, IP QoS-A bold new network, September 1998, NORTEL Market-ing Publiations, Dept. 4262, P.O. Box 13010, Researh Triangle Park, NC 27709[4℄ PASCHALIDIS, I. Ch. and TSITSIKLIS, J. N., Congestion-depending priing of Network Servies,Tehnial Report, Otober 1998, Dept. of Manufaturing Engineering, Boston University, Boston MA02215[5℄ SUBRAMANIAN, J., STIDHAM, S. and LAUTENBACHER, C. J., Airline yield management withoverbooking, anellation, and no-shows, Transportation Siene 33(2),1999, 147-1671The data are obtained from the log �le of the Web-server of the Faulty of Mathematis, University of Waterloo, June2001



Chapter 5Defet Analysis Using Depth fromDefous and Shape from FousMethodsPartiipants: Hedley Morris (Mentor), Alex Hodge, Mahtab Kamali, Mufeed Mustafa Mahmoud,Cristina Popesu, James Rossmanith, Daniel Ryan, Ali Sanaie-Fard, Barkha Saxena.PROBLEM STATEMENT: Newport Corporation manufatures optial equipment and in partiularlaser diodes. These diodes are made from semiondutor material and their operation takes plae on aat surfae, approximately 200 mirons square, onto whih two trenhes have been ethed. If a numberof images, at �xed fous, are taken at varying heights above the surfae, the images will all be out offous. However, the blur of eah image will depend on the height above the surfae. The aim of thisprojet is to determine the diode topography from this sequene of out-of-fous images. This will enablethe identi�ation of depth anomalies that might interfere with the operation of the devie. Suh defetsare not easily detetable by urrent inspetion proedures.
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(a) (b)Figure 5.1: (a) A snapshot of an atual optial hip. (b) Light travels down the grooves of the optialhip. Defets in the hip may ause the light to be deeted or bloked.5.1 IntrodutionIn most imaging systems, a 3D view of the real world is mapped into a 2D image. In this transforma-tion the depth information of the image is lost and the imaging system annot determine the full 3Dstruture of the image. Therefore, it is neessary to develop algorithms whih an extrat the 3D spatialinformation from a series of 2D images.To extrat the spatial information one an retrieve image harateristis by omparing two or moreimages of the objet. If these images are obtained from plaing the amera lens at di�erent distanesfrom the objet, we refer to the depth reonstrution proedure as shape from fous. If the images areaptured by hanging the geometry of the imaging system suh as hange of the foal length of amera,we refer to the depth reonstrution proedure as shape from defous. The shape from fous/defousis referred to as blind de-onvolution in signal proessing or as image restoration in image proessing.In this spei� appliation treated in this paper, a �ber-opti hip (shown in Figure 5.1(a)) is exam-ined for defets by apturing 30 images at di�erent distanes from the hip with a amera. From thepoint of view of industry, this proedure is a relatively inexpensive way to examine the hip. The hiphas to pass light through the two miro grooves (shown in 5.1(b)) ut into hip. Unfortunately, a smalldefet in the shape of the grooves an make the hip useless. Therefore, the objetive of this paper is toestimate the spatial position of the groove by an image proessing tehnique.The 30 images from the hip are aptured at di�erent distanes from the �ber opti hip by hangingthe position of the amera. The di�erene between two onseutive amera positions is approximately2 nanometers. In this researh projet, two di�erent methods for proessing the images are examined.The �rst method is based on proessing the array of images in the frequeny domain using the Fouriertransform. The seond method uses a spatial transform (S-transform) whih is based on a polynomialapproximation of the images.5.2 Point Spread FuntionsWe begin by onsidering a 2D piture or sene of uniform depth. The light intensity of this sene isgiven by f(x; y). The funtion g(x; y) desribes the light intensity of an out-of-fous image of this sene.In order to understand the orrelation between f and g, it is onvenient to introdue the onept of apoint spread funtion (or PSF) denoted h(x; y).Coneptually, the PSF desribes how the light emitting from a point on f is distributed by the ameraonto the image g. Mathematially, the PSF, h(x; y), is de�ned as follows:g = h ? f ; (5.1)



CHAPTER 5. DEFECT ANALYSIS 39where ? denotes the onvolution operator.In the ase of an ideal pinhole amera, the PSF would be a delta funtion. However, in the realworld, we are dealing with optial lens systems and the PSF is not this trivial. Furthermore, the PSFnot only depends on the amera, but on the distane from the objet to the lens; and therefore, it willbe an unknown in our problem. To simplify the problem, however, some assumptions about the formof h an be made. First, h should be radially symmetri about the origin. This represents the fat thatthe amera should not streth the image in some diretion, or introdue some similar bias. Furthermore,we assume that our amera is a lossless system (i.e. it does not absorb any light energy in the proessof olletion). So, if one unit of light energy is inident on the lens, then one unit of light energy willappear in the image g, Z Z h(x; y)dx dy = 1 : (5.2)A standard approximation for h is the 2D Gaussian:hg = 12��2 e�x2+y22�2 : (5.3)Assoiated with the PSF is a blur radius whih represents the radial distane that light is distributedby h. For the 2D Gaussian, the blur radius is proportional to the standard deviation �; and therefore,throughout this paper � will be synonymous with blur radius. Furthermore, we an then use geometrioptis to relate � to the depth D as follows:� = � r v� 1F � 1v � 1D� ; (5.4)where �, r, v, and F parameters desribe the onstant of proportionality between the blur radius and�, the radius of the lens aperture, the distane from the point of perfet fous to the lens, and thefoal length, respetively. Therefore, obtaining information about our PSF diretly translates into depthinformation through amera parameters. We present below two methods for omputing approximationsto �.5.3 Method 1: A Fourier domain approahWe �rst onsider a method based on deonvolution in Fourier spae [1℄. We will assume in this setionthat the foused image f(x; y) in whih we are interested and two unfoused images g1(x; y) and gi(x; y)is given by g1(x; y) = h1(x; y) ? f(x; y) + n1(x; y) (5.5)gi(x; y) = hi(x; y) ? f(x; y) + ni(x; y) ; (5.6)where n1(x; y) and ni(x; y) are random noise. In this projet we will further assume that the noise iszero. Now rewriting the above equations in the frequeny domain by taking a Fourier transform overthe region of interest leads to the following set of equations,G1(!; �) = H1(!; �)F (!; �) (5.7)Gi(!; �) = Hi(!; �)F (!; �) : (5.8)If we assume that the PSF is Gaussian (see Setion 5.2), then the PSF and its Fourier transform areh(x; y) = 12��2 e� (x2+y2)2�2 and H(!; �) = 12��2 e� (!2+�2)2�2 : (5.9)By ombining equations (5.7) and (5.8) yieldsG1(!; �)Gi(!; �) = e� 12 (!2+�2) (�21��2i ) : (5.10)
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Figure 5.2: Plot of �21��2i versus the index i. We take the point where the fous hanges (i.e., the indexat whih the maximum of the urve ours) as a proxy for depth.Taking the logarithm and rearranging (5.10) yields�21 � �2i = �2!2 + �2 log�G1(!; �)Gi(!; �)� : (5.11)A more robust formula an be obtained by integrating (5.11) over a small region in the Fourier domain:C = 1A Z Z �2!2 + �2 log�G1(!; �)Gi(!; �)� d! d� : (5.12)This yields to the following equation:��21 � �2i � = 1A Z Z �2!2 + �2 log�G1(!; �)Gi(!; �)� d! d� : (5.13)5.4 Method 2: A spatial domain approahThe seond approah we onsider is based not on the Fourier transform, but on the S-transform whihallows us to deonvolve in physial spae [2, 3℄. We again use the notation of Setion 5.2 to denote theunblurred image by f(x; y), the PSF by h(x; y), and the images by gi(x; y) where i = 1 : : : 30. We beginby assuming that the image in a small region an be approximated by a bi-ubi polynomial suh thatf(x; y) = 3Xm=0 3�mXn=0 amn xmyn : (5.14)Furthermore, we assume that h(x; y) is a rotationally symmetri point spread funtion. Image gi(x; y)is obtained from the onvolution of the unblurred image with the PSF,gi(x; y) = Z 1�1 Z 1�1 f(x� �; y � �)h(�; �) d� d� : (5.15)Beause f(x; y) is bi-ubi we an write the onvolution kernel asf(x� �; y � �) = X0�m+n�3(�1)m+n �m �nm!n! �mx �ny f(x; y) : (5.16)
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Figure 5.3: Light intensity plot for the setion of optial hip used to ompute a depth map.Plugging this expression into equation (5.15) gives us thatgi(x; y) = X0�m+n�3 (�1)m+nm!n! �mx �ny f(x; y)hmni ; (5.17)where hmni = Z 1�1 Z 1�1 xmyn hi(x; y) dx dy = Z 2�0 osm(�) sinn(�) d� Z r0 rm+n+1 hi(r) dr : (5.18)However, due to the periodiity of the sine and osine, the above expression simpli�es (5.17) tof(x; y) = gi(x; y)� h20i2 r2f(x; y) : (5.19)Taking r2 of both sides of this equation and again using the fat that f(x,y) is bi-ubi yieldsr2f(x; y) = r2gi(x; y) : (5.20)Using this information we an ompletely deonvolve the original integral operator and obtain theexpression f(x; y) = gi(x; y)� �2i4 r2gi(x; y) : (5.21)In the above expression, �2i = 2h20i measures the spread of the PSF. Comparing image i to image 1 andusing the fat that r2f(x; y) = r2g1(x; y) = r2gi(x; y) (5.22)yields that g1(x; y)� gi(x; y) = 18 ��21 � �2i � �r2g1(x; y) +r2gi(x; y)� : (5.23)The di�erene between �21 and �2i an then be omputed over a small region by integrating the aboveexpression as follows: ��21 � �2i � = 8vuut R R �g1 � gi�2 dx dyR R �r2g1 +r2gi�2 dx dy : (5.24)
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(a) (b)Figure 5.4: Depth map proxy omputed using the (a) Fourier domain approah and (b) the spatialdomain approah.5.5 Computing a proxy for the depth mapFrom the data set that we have been provided for this projet we know that the following are true:1. Image 1 is the furthest in distane from the objet,2. Image 1 is most out of fous,3. �21 > �2i 8i 6= 1.Therefore, the image number i for whih �21 � �2i (5.25)is a maximum at some spatial loation is the image whih is in fous. From this fat, we now attemptto onstrut a proxy depth map using a shape from fous approah. We ompute �21 � �2i as a funtionof the index i and look for a maximum. A higher index will orrespond to a deeper part of the objet.An example of �21 � �2i as a funtion of the index i is shown for a partiular pixel in Figure 5.2. In thisase i = 23 orresponds to the foused image. Plotting the maximum i as a funtion of spae produesa proxy for the depth map.To test this proedure on the full problem, we now arry out the above proess pixel by pixel forthe light intensity map shown in Figure 5.3. The resulting depth map proxy obtained by the Fourierdomain approah is shown in Figure 5.4(a) and the spatial domain approah in Figure 5.4(b). Thespatial domain approah seems to produe a better result. To demonstrate that we are able to detetthe hannels, we average the depth map omputed by the spatial domain approah along the diretion ofthe hannels, ollapsing our information into the plot shown in Figure 5.5. In this plot lear dips ourin the loations where we expet the hannels to be.5.6 Obtaining depth from blurUp to this point we were not able to ompute a true depth map, but instead only a proxy for the depthsusing �2 di�erenes. In this setion we fous on obtaining true depths from our previously alulated�21 � �2i . Re-arranging equation (5.4) gives an expression for the depth in terms of amera parametersand �21 � �2i , D = a1 � k2p�21 � 2i2i + a2 ; i = 1; : : : ; 30 : (5.26)
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Figure 5.5: Approximate depth map averaged along hannel diretion.For this equation we need the following de�nitions:i � �21 � �2i for i = 1; : : : ; 30 (5.27)a1 � k1k22 (5.28)a2 � k21k22 � �2i (5.29)�21 � spread for the �rst image (5.30)k1 � 1F � 1v (5.31)k2 � �rv : (5.32)The true depths an now be omputed from the �2 di�erenes by solving the above equations for D andall the unknown amera parameters (�, r, v, and F ) in the least squares sense. In other words, we areable to solve equation (5.26) for D and all the unknown amera parameters beause we are given severalimages of the objet at di�erent heights (i.e., i = 1; : : : ; 30).In terms of the projet outlined in this paper, we were not able to apply the above method foromputing true depths to the data omputed in Setions 5.3 and 5.4 due to time onstraints. Futurework should fous on applying the above least squares analysis on the previously alulated proxy depthmaps.5.7 ConlusionsIn this paper we developed two distint methods for estimating the depth pro�le of a series of 2D imagesof a semiondutor hip. We have found that the method based on the spatial transform deonvolutionmethod produes more aurate results than the more traditional Fourier transform approah. Althoughwe did not have enough to time to �nish the task, we also worked on developing a least squares approahfor translating the depth maps produed by the deonvolution methods into physial depth maps.Although we were able to obtain some results with the spatial transform deonvolution method,our numerial simulations fail to produe results that are aurate enough for deteting defets in thegrooves of the hip. We believe that most of this is due to the fat that there exists signi�ant noisein our data. Our data set had only a three pixel width aross the hannel. This makes the task ofmaking a detailed map within the hannel very diÆult and allows for less �ltering/smoothing of theimage without destroying the hannel information.



44 CHAPTER 5. DEFECT ANALYSISReferenes[1℄ S. Chaudhuri and A.N. Rajagopalan. Depth from defous: a real aperture imaging approah. Springer-Verlag, 1999.[2℄ M. Subbarao and G. Surya. Depth from defous: a spatial domain approah. Tehnial report No.92.12.03, Computer Vision Laboratory, Eletrial Engineering Department, SUNY, Stony Brook, NY.[3℄ D. Ziou. Passive depth from defous using a spatial domain approah. Teh. Report, DMI, Universitede Sherbrooke, 1997.



Chapter 6Ie AretionPartiipants: Tim Myers (Mentor), Thomas Brakel, Brian Corbett, Aude Espesset, Jihyoun Jeon,Mehdi Hadj-Karim-Kharrazi, Ali Rasekh, J. F. Williams.PROBLEM STATEMENT: Ie aretion on surfaes is a serious problem in for any surfaes in oldondtions, suh as airraft at high altitude and strutures in harsh winter environments. The problemis to model the formation of ie on surfaes from super-ooled water droplets.
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46 CHAPTER 6. ICE ACCRETION6.1 IntrodutionIe aretion an ause the downing of both power lines and airplanes, unheked it an ause a hugeost, both �nanial and human. Understanding the mehanism by whih ie forms and how the variousphysial parameters a�et this growth is of key importane to design of de-iing systems for airraft andadequate strutures to withstand harsh environments.In this problem we have many ompeting physial phenomena and we must onsider them all in orderto onstrut a valid model. To make the problem tratable we �rst make many simplifying assumptions:1. The surfae is at and uniform,2. The inoming droplets are uniform in spae and time,3. There is little water; water motion is unimportant,4. The surfae is lean,5. The droplets are pure liquid water,6. Trapped air a�ets only the ie density, it is of no thermodynami importane,7. Mass losses due to evaporation are negligible,8. The substrate and the air stream have very large thermal masses,9. Mass is onserved,10. Energy is onserved.Mathematially assumptions (1) � (3) imply that a one dimensional redution is reasonable. As-sumptions (4)� (5) mean that there will be a sharp interfae between the ie and water at exatly thefreezing temperature of water, this also means that all heat release from the freezing of the droplets willour at the upper ie surfae. The mass balane is easier to do assuming (6). Making assumption (7)means that we do not need to onsider the temperature problem in the substrate or the air as they willremain onstant for all time. The last two assumptions give us equations to solve one we have deidedon all the important energy balane terms.Beause we are interested in ie aretion on both land-based strutures suh as power ables andtowers and also on airplane wings we must onsider many seemingly trivial a�ets. Upon onsultationof the aerodynamis literature [1℄ one �nds that the relevant gain terms are the latent heat of freezingat the ie surfae, the kineti energy of the inoming drops and the aerodynami heating due to loalompression of the air. Energy is lost in proportion to the di�erene of the temperature of the uppersurfae and the air due to sublimation or evaporation, ooling due to the thermal mass of the inomingdrops and surfae onvetion. Energy is also transported by ondution. Expressions for all thesemehanisms are presented in the Table 1.Table 1: Energy balane termsEnergy inputs 1. Kineti energy of inoming drops Qk = _MW 222. Aerodynami heating Qa = rHwW 223. Latent heat of freezing Qf = �iL _hiEnergy outputs 1. Evaporation/Sublimation Qe = �e0(T � Ta)2. Cooling by inoming droplets Qd = _Mw(T � Ta)3. Surfae Convetion Qs = H(T � Ta)Energy transport Condution adds or removes heat Q = ��T�x



CHAPTER 6. ICE ACCRETION 47Table 2: Parameter valuesParameter Physial meaning Value Unitsa Spei� heat of air 1014 J/kg Ki Spei� heat of ie 2050 J/kg Kw Spei� heat of water 4218 J/kg KLF Latent heat of fusion 3:344� 105 J/kge0 Vapour pressure onstant 27.03 Pa/KW Wind speed 90 m/sr Loal reovery fator .55Haw Heat transfer between air and water 500 W/m2 KHai Heat transfer between air and ie 500 W/m2 KHis Heat transfer between ie and substrate 1000 W/m2 K�i Condutivity of ie 2.18 W/m K�w Condutivity of water 0.571 W/m K�w Density of water 1000 kg/m3�i Density of ie 900 kg/m3� Evaporation oeÆient 11.0 m/ski Thermal di�usivity in ie 2.18 m2/skw Thermal di�usivity in water 0.571 m2/sTa Ambient air temperature 230 to 265 KTs Substrate temperature 230 to 265 KTa Freezing temperature of water 273 K_M Mass transfer rate .045 kg/s m2To properly model this situation we now need only de�ne a heat equation for eah phase and thenapply the appropriate energy balane at eah interfae. The mass balane requires that the total amountof material whih has fallen remains on the surfae in either liquid or solid form.The meaning and values of all parameter values are desribed in Table 2. Subsripts are usedto denote the phase or substane. For example, the heat lost through surfae onvetion is given byQs = Hai(T�Ta), whereHai is the heat transfer oeÆient from air to ie, Ta is the �xed air temperatureand T is the temperature variable.Beause we have a sharp interfae the droplets freeze immediately upon impat at the upper surfae.Instantly the ie will be at the substrate temperature whih we assume will be well below freezing. Asmore droplets ome in more latent heat is released and we expet the temperature at the surfae toslowly inrease until eventually water forms. One of the key objetives (and suesses!) of this work isto determine the thikness at whih this water �rst appears. This also suggest that we need to breakthe problem down into two ases, �rstly when there is no water and then when both phases are present.6.2 Model equationsFrom the energy and mass balanes desribed in Setion 6.1 we may write down the following equationsgoverning our system using the geometry and notation as desribed in Figure 6.1. Here we are takingz to be the spae diretion and t for time as the independent o-ordinates. The dependent o-ordinatesare explained in table Table 3: Dependent variablesVariable Physial meaningB(t) Thikness of the base of ieh(t) Height of the water layerT (z; t) Temperature in the ie layer�(z; t) Temperature in the water layer
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Figure 6.1: Diagram of ie aretion modelWe begin the modelling with the no water ase, h = 0.6.2.1 No water presentBeause there is no water present the onservation of mass statesB(t) = t _M�i : (6.1)In the ie region we have a di�usion equation for the temperature,�i �T�t = �ii �2T�z2 : (6.2)To be able to solve this problem we also impose the boundary onditions�T�z ����z=0 = His(T � Ts); (6.3)��i �T�z ����z=B = (Hai + _Mw + �e0)(T � Ta)� rHaiW 22a + _MW 22 + _MLf! : (6.4)Physially the initial ondition h = 0 states that there is initially no water and the boundary on-ditions (6.3){(6.4) balane the energy loss and gain terms at the ie, substrate and ie, air interfaesrepsetively.6.2.2 Water presentWe again begin by writing down the governing equations, onservation of mass and di�usion equationsfor the temperature in the two phases. _Mt = �iB + �wh (6.5)�ww �2��z2 = �w ���t (6.6)�ii �2Ti�z2 = �i �Ti�t : (6.7)This system provides only three equations in the four unknowns, �(z; t), T (z; t), B(t) and h(t). Consid-ering the energy balane at the interfae between the ie and water layer gives a Stefan ondition [2℄ forthe motion of the interfae, �iLf dBdt = �i �T�z � �w ���z : (6.8)



CHAPTER 6. ICE ACCRETION 49The system is now losed with the addition of initial onditions in time,B(tw) = Bw; (6.9)h(tw) = 0 (6.10)where tw is the time at whih water �rst appears and Bw the thikness, and boundary onditions inspae, �T�z ����z=0 = His(T � Ts) (6.11)T (B; t) = Tf (6.12)�(B; t) = Tf (6.13)��w ���z ����z=B+h = � rHawW 22a + _MW 22 !+ (Haw + _Mw + �e0)(� � Ta): (6.14)6.2.3 Complete problemThe solution strategy is to solve the ie-only problem until the temperature at the ie air interfae isthe freezing temperature whih indiates that water has formed. At this time, tw, we then solve theombined problem until some large �nal time, tf . Of primary interest is the thikness of the ie at timetw.6.3 Non-dimensionalizationBeause of all the physial parameters in the problem it is diÆult to disern the relevant importane ofthe terms. To ompare the relative values we introdue non-dimensional variables and reast equations6.1{6.14. Dimensionless variables are indiated with a supersript .̂We begin by resaling the oordinates t and z. An arbitrary timesale is used suh that the onser-vation of mass in the water only ase redues to ẑ = t̂. This implies that the temporal sale � is de�nedsuh that � = tw where tw is the time at whih water �rst appears.� t̂ = t �ẑ = z where � = _M��i :This hoie of spatial saling sets �B̂ = B �ĥ = h:To simplify the temperature in the ie region we resale the temperatures asT̂ = T � TsTf � Ts �̂ = � � TfTf � Ts :With these de�nitions we onsider the problem in the two di�erent ases.6.3.1 No waterThe system 6.1{6.4 may be rewritten as B̂ = t̂�1 �T̂�t̂ = �2T̂�ẑ2�2 �T̂�ẑ �����ẑ=0 = T̂�T̂�ẑ �����ẑ=B̂ = ��1T̂ + �2:



50 CHAPTER 6. ICE ACCRETIONThe above parameters take the values,�1 = �2�i��ii�2 = �His�1 = �Hai + _Mw + �e0�i�2 = ��i  rHaiW 22a + _MW 22 + _MLf � Ts � TaTf � Ts (Hai + _Mw + �e0)! :6.3.2 Water presentThe system 6.5{6.14 may be rewritten aŝB = t̂� �3ĥ�1 �T̂�t̂ = �2T̂�ẑ2�3 ��̂�t̂ = �2�̂�ẑ2�2 �T̂�ẑ �����ẑ=0 = T̂dB̂dt̂ = 1 �T̂�ẑ �����ẑ=B̂ � 2 ��̂�ẑ �����ẑ=B̂T̂ (ẑ = B̂) = 1�̂(ẑ = B̂) = 0��̂�ẑ �����ẑ=B̂+ĥ = ��1�̂ + �2:The new parameters take the values,�3 = �2�w��ww1 = �i�i� _M2Lf (Tf � Ts)2 = �2w�w� _M2Lf (Tf � Ts)�i�1 = �Haw + _Mw + �e0�w�2 = ��w  rHaiW 22a + _MW 22 � Ta � TfTf � Ts (Haw + _Mw + �e0)!�3 = �w�i :Taking the values from Table 2 for �1, �2 we �nd that for � � 400s both these terms may be negleted.�3 also remains small when the water layer is thin. In the next setion we will onsider the solutions forthe problem as stated above but for �1 = �2 = �3 = 0.Please note the hats, ,̂ over the dimensionless variables will be dropped from this point for theremainder of this and the next seion for notational onveniene.



CHAPTER 6. ICE ACCRETION 516.4 Asymptoti Solution6.4.1 Initial Stage (no water)In the asymptoti ase the temperature pro�les are linear in the thikness z, but not in time. The pro�leis given by �2T�z2 = 0T (0) = 0�T�z ����z=B = �1 � �2T:whih is easily solved to give T (z; t) = �1z1 + �2B(t) :To �nd the thikness, Bw at whih water �rst appears we set T (Bw; tw) = 1 whih de�nesBw = 1�1 � �2 : (6.15)6.4.2 Model with ie and waterIn the asympoti regime both temperature pro�les are linear.�2T�z2 = 0 �2��z2 = 0:With the boundary onditions T (0) = 0 T (B) = 1and �(B) = 1 ���z ����z=B+h = ��1� + �2the pro�les are given by, T = zB ; � = 1 + �21 + �1h (z �B):Notie that we have solved the temperature pro�les without invoking the Stefan ondition! Substituingthe pro�les into the Stefan ondition gives an ODE for the thikness of the ie layer.��B�t = 1B � �21 + �1h:One this has been omputed the pro�les may be reovered. Reall that the height of the ie layer andthat of the water layer are related by the onservation of mass equation 6.5.6.4.3 Asymptoti results in dimensional variablesIn order to ompare to experiment and the full numerial simulations we must onvert our dimensionlessresults bak into their dimensional form.The height at whih water �rst appears is given by,Bw = �i(Tf � Ts)rHaiW 22 + _MW 22 + Lf _M � (Tf � Ta)(Hai+ _Mw + �e0) :



52 CHAPTER 6. ICE ACCRETIONIn terms of the given parameter values this works out toBw � 2:5mmwhih agrees very well with experiment [3℄! For these values one also �nds tw = � � 50s whih is wellbelow the upper limit of 400S.Setting Bw = 1, or �1 = �2 in (6.15) we an determine the temperature di�erene suh that nowater ever forms, The temperature di�erene beyond whih no water forms is given byTa � Ts = �T = rHaiW 22 + _MW 22 + Lf _MHai+ _Mw + �e0) :This gives an approximate value of, �T � �16C:6.5 Numerial solution of the omplete problemThe numerial solution of this problem proeeds in the same stages as the analyti solution. Firstthe ie-only problem is onsidered and then one water has appeared, the ombined problem is solved.Beause the interfae is unknown and no modelling of the exterior air region is done, we propose to use aoordinate transformation to map the physial layers, [0; B(t)℄ and [B(t); B(t) +h(t)℄ whose thiknessesvary with time to �xed omputational intervals on [0; 1℄. This is done by de�ning the oordinatesx = zB(t)y = z � B(t)h(t) :This transformation auses two diÆulties, it makes the equations to be solved more ompliatedand it is singular as the layer thiknesses tend to zero. The �rst is not a signi�ant issue numeriallyand the seond may be handled either by using an impliit method or adding an arbitrarily thin baselayer. For onveniene we shall employ the latter strategy. Beause the timesale � = tw is not knowna priori we must solve the full dimensional system 6.1{6.4. Again we begin with the ase where waterhas yet to form.6.5.1 No water presentBeause the ie layer grows at a onstant rateB(t) = t _M�i +B0upon de�ning f(x; t) = T (z; t)we have a simple PDE for f , ft = �ix_Mtfx + �3i i�i _M2t2 fxx:This is solved with the boundary onditionst�T�x ����z=0 = �iHis_M (T � Ts);� _M�i�i t �T�z ����z=B = (Hai + _Mw + �e0)(T � Ta)� rHaiW 22a + _MW 22 + _MLf! :



CHAPTER 6. ICE ACCRETION 53and an initial arti�ial layer B(0) = B0 � 1 (� 10�6)until f(1; tw) = Ti at whih point water will form at the upper surfae. This relationship de�nes tw.Then we move on to the oupled problem.6.5.2 Water presentNow that the ie growth rate is no longer onstant we need to solve the ODE for the free boundary aswell. De�ning g(y; t) = �(z; t)we need to solve the oupled system ft = B0xB fx + �ii�iB2 fxx;gt = y +Bh gy + �ww�wh2 gyy;_Mt = �iB + �whand �iLfB0 = �iB fx � �wh gy:The last equation is evaluated aross the interfae x = 1, y = 0. Beause of the non-loal nonlinearityin the system an impliit-expliit formulation should be used where the PDEs for f and g are integratedwith a Crank-Niholson sheme keeping B and h �xed, after eah step B and h are updated.6.6 ConlusionsIn this report we have onstruted a one-dimensional model for the growth of ie and water layers dueto inoming superooled drops. This model aounts for all signi�ant physial e�ets and is henesomewhat unwieldy. Instead of analysis of the full set of equations an asymptoti redution was madeto produe a mathematially tratable model. This redues a oupled system of PDEs to a single orderODE for the thikness of the ie layer. One this has been numerially alulated the temperaturepro�les and water layer thikness may be easily obtained.The model predits that initially a layer of ie forms on the surfae until enough latent heat has beenreleased to melt the surfae layer. A simple expression for this thikness at the onset of water formationwas derived and found to agree not only with the numerial simulations but experimental data aswell. From this expression one an easily see the relevant importane of the onsidered physial e�ets.Additionally we derived a ritial temperature di�erene between the surfae and air temperatures forwhih no water forms. This also agrees well with experimental evidene!A general sheme for integration of the full system was attempted in MatLab but due to the largenumber of physial parameters, the diÆulty of the problem and time onstraints no satisfatory resultswere obtained. The general sheme is sound and, given suÆient time we believe that reliable resultsould be heked against the asymptotis.Referenes[1℄ Messinger, B.L., Equilibrium temperature of an unheated iing surfae as a funtion of air speed.Jnl. Aero. Si. Jan. 1953.[2℄ Crank, J. D., Free and moving boundary value problems. Oxford Siene Publiations, 1984.[3℄ Myers, T.G., private ommuniation.



Chapter 7Estimating Risk-Neutral ProbabilityMeasuresPartiipants: Miro Powojowski (Mentor), Joel Hanson, Kristen Jaskie, Judy Lai, Shuqing Liang, Has-san Masum, and Rafael Meza.PROBLEM STATEMENT: The Blak-Sholes formula is ommonly used to prie options, due to itsease of use and omprehensibility. However, the formula assumes that the volatility of the underlyingseurity is onstant aross strike pries, whih is empirially not the ase. For instane, the "volatil-ity smile" refers to the fat that options whih are far-from-the-money often trade at higher impliedvolatilities ompared to options whih are lose-to-the-money.It's therefore of interest to �nd a probability measure on option strike pries, suh that using thisprobability measure smooths the implied volatility of the option to a onstant value. This probabilitymeasure is alled the Risk-Neutral Probability Measure (RNPM) .We looked at several possible methods for �nding the RNPM, and explored two in some detail:histograms and Hermite polynomials. A regression algorithm was then implemented for �tting param-eterizable histograms to the observed option prie data. Bakground, methodology, results, ideas forfuture work, and referenes follow.
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CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES 557.1 Problem Bakground7.1.1 Assumptions and Binomial Tree ModelsReal seurities are extremely omplex and hene require some level of simpli�ation. We thereforeassume:� A single-period model with two time steps: now (time 0), and some future time T.� A risk-free rate of interest r exists (e.g. government bonds).� No arbitrage opportunities exist (i.e. an astute investor annot make money with zero risk throughexploiting priing imperfetions).� The seurities in question are highly liquid and tradeable at will.Suppose the stok has prie S now, and an rise or fall in prie into one of 2 states at time T,with pries Sup and Sdown respetively: this gives the 1-step Binomial Tree model. (The model an begeneralized to multiple time steps and higher-fanout trees in intuitive ways, although the omputationale�ort involved grows rapidly due to the exponentially-inreasing size of the tree.)We an use this simple model to prie the urrent value of an option to buy the stok at time T. Todo this, we reate a partiular portfolio of the stok and the option whih has no unertainty as to itsfuture value. Sine this \repliating portfolio" has no risk, it must earn a rate of return equal to therisk-free rate.Denote the urrent (unknown) prie of the option by O; denote the payo� on the option if S goes upor down by Oup and Odown respetively. Consider a portfolio onsisting of a long position in N sharesof the stok and a short position in one option. We an then express the value of this portfolio underthe two possible outomes:1. Stok goes up: Sup N - Oup.2. Stok goes down: Sdown N - Odown.The value will be equal (and the portfolio will therefore be riskless) when these two quantities areequal, i.e. when N = Oup �OdownSup � Sdown (7.1)This ould be onsidered as the ratio of option prie hange to stok prie hange between the twooutomes.If the interest-free rate is r, the present value of this portfolio is found by disounting bakward:PV = e�rT (SupN �Oup) (7.2)(The �rst term omes from the formula for ontinuous ompounding: (1+r/m)mT approahes erT inthe limit.) Sine the portfolio ost was S N - O, we an equate the present value of the portfolio withits urrent ost and solve for O: O = e�rT (pOup � (1� p)Odown) (7.3)where p is a derived quantity equal to erT � (Sdown=S)(Sup=S)� (Sdown=S) (7.4)So, the point of this is that we an prie an option using a 1-step binomial model, if we an observethe pries of the option and stok under both onditions at time T, and the prie of the stok now. This



56 CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURESis not too useful for a single time step, but if we are investing over a long period of time (and if marketonditions stay similar), then we an use a series of 1-step observations to derive \expeted" optionpries. (Note that the option prie does not depend on the probability of the stok prie inreasing ordereasing; this is basially beause the option is being valued relative to the underlying stok and notin absolute terms.)7.1.2 Risk-Neutral ProbabilityThe variable p above an be interpreted as the probability of an up movement in the stok prie; thusthe quantity (p Oup -(1-p) Odown)is the expeted payo� of the option. With this interpretation, the expeted stok prie at time T isp Sup +(1-p)SdownSubstituting the previous de�nition of p, we get S erT . In other words, the stok prie grows at therisk-free rate.This illustrates the priniple of risk-neutrality. In a risk-neutral world, investors require no om-pensation for risk but are onerned only with the expeted return of seurities. For a ompletelyrisk-neutral investor, a government bond with guaranteed payo� is equivalent to a highly leveragedspeulative portfolio, as long as both have the same expeted payo�.(NB: Risk-neutrality is obviously not true in general in the real world, where e.g. investors have�nite bankrolls and are usually risk-averse toward going bankrupt. However, it may be a reasonableapproximation in a sizeable range of expeted payo� values for a large investor, where the investor'sutility funtion of wealth is relatively at.)7.1.3 Valuing OptionsWhat we are looking for, then, is a measure under whih risk-neutral valuation holds. We applied theseonepts to the valuation of European options, whih an only be exerised at expiry. (In ontrast, mosttraded options are Amerian options whih an be exerised at any time prior to expiry.) There are twomain reasons for the use of European options in math �nane:1. Analytial tratability: sine there is a single expiry time, the investor has only two possibleations, i.e. to exerise or not at time T.2. The ounterintuitive theoretial result that it is suboptimal to exerise Amerian all optionsprematurely, due to both foregone interest on the ash used to purhase the all option anddownside risk from holding the stok instead of the option. (Note that, due to our assumption ofstok pries following geometri Brownian motion, this result assumes the investor has no advantageover other investors in piking undervalued stoks and prediting the future path of stok pries.)For our ase of valuing European options, the risk-neutral measure ould intuitively be onsidered asa probability density funtion (PDF) of the possible option pries at expiry; integrating this PDF withthe value of the option payo� gives the value of the option. Formally,CallP rie = exp(�rT ) Z 1K (S �K)dF (S) (7.5)where CallPrie denotes the market prie of the all option, K the orresponding strike prie, and S theprie of the underlying stok. (We integrate over all stok values that give us a non-negative return onexerising the option.)



CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES 577.1.4 Our DataWe had several data �les to work with:� Option Pries (both alls and puts) for the S&P 100, S&P 500, GM, and Mirosoft. As withmuh �nanial data, there are limitations in the data, e.g. lak of information on thinly tradedoptions. (Note that some pratitioners argue that more weight should be given during analysis tothe implied volatility of lose-to-the money options; far-from-the-money options tend to have lessvolatility anyway.)� Interest rate data from 1997 to 2001. The data inluded, for eah date, a seletion of rates fordi�erent periods; it is thus possible to view the term struture of (future) interest rates at eahday in the past. We an interpolate to estimate interest rates that are not expliitly given.� Some graphs of implied volatility, and misellaneous supporting data.7.2 Models7.2.1 Geometri Brownian Motion and the \Volatility Smile"Our basi ontinuous ase is geometri Brownian motion, where stok pries follow a random walk withpositive bias (i.e. stok prie hanges are normally distributed with positive mean).This implies that the distribution of asset pries in the future, onditional on urrent asset pries,should be lognormal (i.e. the instantaneous rate of return on the asset should be normal). As a onse-quene of this fat and the risk-neutrality priniple, a graph of the strike prie of an option against theimplied volatility of the option (or the graph of observed log return against implied volatility) should beat.The implied volatility is a derived parameter alulated using the Blak-Sholes equation for optionpriing; one assumes Blak-Sholes holds, observes pries, and then solves for the volatility variable in theequation. It's important to note therefore that implied volatility is not a diretly observable parameter,but rather a derived parameter whih is only provably valid if the model assumptions on the option'sbehavior hold. (Implied volatility may still be useful if the option's behavior is \lose enough" to whatour models say it should be : : : note that de�ning \lose enough" is also an open researh problem).Both these impliations are violated in atual markets. In partiular, the \volatility smile" is aphenomenon in whih the implied volatility of options lose to the money is less than options far fromthe money; these fat tails may ome from larger numbers of extreme market events than predited, ornon-neutral investor risk preferenes, or systematially biased expetations of future market events.7.2.2 Martingales and Asset PriingA Martingale is a proess for whih E[Xt+1 j X1,..., Xt℄ = Xt; you expet the proess to generate anoutome with expeted value equal to the most reent outome, but hange your expetations to mathwhatever atually happens. As an important example, a sum of suessive IID variables, eah of whihhas mean 0, will give a martingale. (Note that martingales are not neessarily Markov, but if they arethen we have a very nie situation indeed.)The relevane to risk-neutral valuation omes from a series of key results:� The no-arbitrage theorem tells us that the absene of arbitrage opportunities in the market impliesthe existene of an equivalent measure under whih disounted stok pries are martingales.� The ompleteness theorem tells us that these martingale measures are unique if repliating port-folios exist for all ontingent laims.� Finally, the Fundamental Theorem of Asset Priing tells us that a unique equivalent martingalemeasure exists. This measure is exatly the risk-neutral probability measure that we are searhingfor.



58 CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURESMore detail an be found in e.g. (Bingham & Kiesel 1998).7.3 Inferring the Risk-Neutral Measure7.3.1 Our Basi IdeaUsing the data desribed above, we have explored several methods for inferring the risk-neutral probabil-ity measure (RNPM). Two methods were looked at in some detail with regard to our sample set, Hermitepolynomials and histograms (these methods de�ne the model lass used to estimate the RNPM).The basi idea ontains several steps. First, we de�ne a model lass for our risk-neutral probabilitymeasure. This model lass de�nes the parameterized searh spae of funtions in whih we will belooking for the losest approximation to the RNPM (where \losest approximation" is de�ned by someloss funtion like least-squares).Next, we need to atually �nd the partiular funtion that best approximates the RNPM. We didthis using standard regression tehniques to estimate the parameters for our model, given that the modelhas to �t the observed option pries.Finally, we need to hek our estimated RNPM for validity. This is a statistial hypothesis testingproblem for whih many tehniques are available; our basi approah was to ompare the error terms tothe expeted lognormal distribution. (Note that this last step, while essential to have any faith in theinferred RNPM, is diÆult to do well due to noise in the data, peuliarities in �nanial markets, and soon.)7.3.2 Expansion MethodsOne way to estimate the RNPM is to assume it an be approximated by:f(x) =Xi �ifi(x) (7.6)for a suitable base of funtions. This is just a general tehnique of deomposing a funtion into alinear ombination of simpler basis funtions; the �i are salar parameters, and the fi are some set ofbasis funtions.A simple example, whih we implemented, uses a histogram approah. Eah fi is simply a histogrambin, i.e. a funtion whih takes a onstant value on some interval of predetermined width and zero valueeverywhere else. The �i then represent the height of eah bin.A more sophistiated example is given by:f(x) =Xn �n'(n)(x) (7.7)where '(n)(x) denotes the nth derivative of '(x) = exp(�(x2 )2)Thus this partiular expansion takes the form:f(x) = '(x)(1 + b1H1(x) + b2H2(x) + :::) (7.8)where Hn denotes the Hermite polynomial of order n and the �rst oeÆient is equal to one to ensurea funtion whose integral is 1.It is important to note that in order to get a density, f(x) has to be positive everywhere, a onditionthat is not always satis�ed.Estimation of the CoeÆients.Given a set of options with the same maturity and di�erent strike prie, we are looking for a probabilitymeasure whih satis�es: Cj = exp(�rT ) Z 1kj (s� kj)dF (s) + "j ; j = 1::n (7.9)



CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES 59where Cj denotes the observed market prie of the jth option and kj its orresponding strike prie.Assuming that F (x) has a probability density f(x) whih an be expressed as an expansion of theform (7.6), we get the result that the prie of the options is given by:Cj = exp(�rT )Xi (�i Z 1kj (s� kj)fi(s)ds) + "j ; j = 1::n; i = 1::m (7.10)Thus, we have to �nd oeÆients �i, suh that:C =W� + " (7.11)where W is a matrix de�ned by Wji = exp(�rT ) Z 1kj (s� kj)fi(s)ds (7.12)Now we have a regression problem, whih an be takled in the standard way (exept that we havethe restrition that the resulting funtion has to be positive).Two ases: Histograms and Hermite polynomialsAs an initial example we adjusted a histogram to the data, i.e. we used indiator funtions as our basisfuntions. In this ase, to ensure that we get a density, we have to fore the oeÆients to be positive.This an be done using onstrained optimization tehniques, when solving the least squares problemassoiated with the regression.As a seond example, we explored the use of the expansion (7.8) whih uses Hermite polynomials.In this ase, the positivity ondition is broken in some ases regardless of the sign of the oeÆients, sowe have to �nd the proper number of terms in order to get a logial result.7.3.3 Other MethodsA number of other methods have been proposed for estimating RNPM's:� Generalized distributions. More general distributions than the ones mentioned above.� Mixture distributions. A ombination of two or more distributions. The parameters de�ning theombination weights ould potentially hange over time, to better model dynami option behavioras the expiry date approahes.� Kernel smoothers and implied volatility smoothing.� Entropy methods.� Heuristi optimization methods.� Implied binomial trees.� Monte Carlo and Markov Chain approahes.Many of these methods are surveyed in (Jakwerth 1999). Clearly, a great deal of fertile ground forexploration remains in this area.



60 CHAPTER 7. ESTIMATING RISK-NEUTRAL PROBABILITY MEASURES7.4 Results and Appliations7.4.1 Statistial InfereneOur goal was to hek if our models of risk-neutral measures math reality, within some on�deneinterval. As explained in the previous setion, we had several observed parameters for our model:observed option pries, strike pries and maturity dates for eah option, and the riskless (i.e. interest)rate.The next step was to speify a statistial hypothesis that ould be used for testing. Our hypothesiswas that two sets of observed pries were generated by the same risk-neutral measure. Under this nullhypothesis, the ratio of residuals squared should follow an F-distribution; we an thus onstrut an f-testthat should rejet the null hypothesis if large values of the f statisti are observed.Unfortunately, a number of diÆulties were enountered while arrying out this proedure. The mostserious involved omputational inauraies in the statistial pakages being used (inluding S-Plus).However, we were still able to implement the test for the histogram approximation method. Day-to-day hanges in the RNPM were deteted using our test, at a qualitatively high level of signi�ane.More work is needed to interpret the results of our test. Given that the RNPM has hanged betweentwo time periods, what an we infer? This requires further analysis, and orrelation of hanges in theRNPM with hanges in market sentiment and fundamental valuation. Developing automated proeduresfor estimating these latter subjetive quantities would be very useful, from the point of view of bothhypothesis testing and interpretation of results.7.4.2 Inferring Market SentimentWhat an we infer if the \term struture of all option pries" hanges? E.g. if the observed value of anout-of-the-money all option at a spei� strike prie drops, two somewhat ontraditory explanations arepossible: i) investors have beome more bearish (they expet stok pries to derease) and hene expetthat the stok prie will not rise enough to exerise the options; ii) volatility in the market has beenredued, and so the hanes of the stok prie hanging enough for the option to beome in-the-moneyhave dropped. Sine inreased volatility is often assoiated with bearish market onditions (e.g. sello�s),it takes some are to interpret hanges in option pries. Developing robust quantitative estimators forsuh hanges in sentiment seems to be an open question.Changes in the risk-neutral distribution or in implied volatility may also imply important hanges inmarket sentiment.7.4.3 Future WorkAlong with testing whether risk-neutrality holds and deriving a probability measure under whih in-vestors are risk-neutral, it would be useful to investigate the sensitivity of risk-neutral valuation tohanges in assumptions or market onditions. This is learly a large task, requiring a good deal of sub-jetive evaluation and judgement in assessing market onditions and reations; relaxing the assumptionswould also make analysis more diÆult.Although general linear tests are useful in deteting hanges in an RNPM, more powerful tests wouldbe helpful in deteting only those hanges whih are important from a risk-management point of view.An RNPM, one estimated for a given �nanial instrument, an be used to prie other types of �nanialinstruments. It is therefore important to keep working to improve estimation tehniques.
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Chapter 8City LightsPartiipants: Moshe Rosenfeld (Mentor), Tom Alberts, Angus Argyle, Andrew King, Nathan Krislok,Jill Zarestky.PROBLEM STATEMENT:We onsider a theoretial ity, arranged in a grid pattern with a spei�ednumber of North-South streets (olumns) and East-West avenues (rows). At eah intersetion of a streetand avenue, there may be a light that requires power. The power swithes are organized so that thereis exatly one swith for every olumn and exatly one swith for every row. In order to save energy, wewould like to minimize the number of swithes turned on (and hene the unneessary lights with power)but at the same time guarantee that all the neessary intersetions have been lighted.

62



CHAPTER 8. CITY LIGHTS 638.1 The ProblemConsider the ten by ten grid in �gure 8.1. The squares marked by an \x" represent intersetions thatdo not need power and the blank squares represent intersetions that must be powered. In order tominimize the number of swithes turned on while still overing all the neessary intersetions, we beginby examining a similar problem, plaement of rooks on a hessboard.

Figure 8.1: Sample grid.Reall the allowable movements of the rook (or astle) in hess. The rook may move any number ofsquares in either the vertial or horizontal diretion at eah turn. The objet is to plae as many rooks aspossible on a given hessboard1 under the restrition that no two rooks should be able to take eah other.In other words, there may only be one rook per row and olumn. It is well established that the questiononerning the maximum number of rooks an be answered by the rook polynomial where the oeÆientof xk gives the maximum number of ways that k rooks may be plaed. Clearly, the highest power of xwith a non-zero oeÆient gives the largest possible number of rooks. Unfortunately, this method doesnot address the issue of the swithes but we may still use the basi idea of rooks to implement a solutionto the ity lights problem (see Grimaldi [1℄).Relevant to the lighting issue is the notion of independent rows and olumns. Spei�ally, for eah rook,we know that either the row or olumn oupied by the rook must be lit to ensure that the interse-tion represented by the rook is illuminated. From this, we may onlude that the minimum number ofswithes is at least as large as the maximum number of rooks plaed on the grid. Furthermore, we willshow that the minimum number of swithes is exatly the maximum number of rooks. This is a simpleonsequene of Honig's Theorem and is disussed in Setion 8.3.This doument is organized as follows: In Setion 8.2 we will disuss our methods for solving the problem.In Setion 8.3 we will present our solution of the problem and in Setion 8.4 our onlusions. Finally, inSetion 8.5 we will make reommendations for future study.8.2 MethodsWe used a progression of algorithms to build up to an optimal solution of the swith problem usind ideasfrom the rook plaement problem.1. A Greedy algorithm for the initial plaement of rooks.2. The Method we all Augmented Paths to maximize the number of rooks.3. A systemized marking of olumns and rows generated by Alternating Paths in order to minimizethe number of swithes.1In order that the problem stated be nontrivial, we assume that a hessboard is a proper subset of the usual 8 by 8grid, orresponding to the open squares in the streetlight grid.



64 CHAPTER 8. CITY LIGHTSThe ombination of these three algorithms leads to a solution in whih the number of rooks is the sameas the number of swithes. Let us now desribe the algorithms.8.2.1 Greedy AlgorithmIn the greedy algorithm, the grid is traversed row by row, starting with the topmost row. In eah row, arook is plaed in the leftmost available square whih does not already have a rook in the orrespondingolumn. If the entire row is marked with x's or if all the empty squares have rooks in the assoiatedolumn, then the row is skipped and we proeed to the next one. In this manner we plae a suÆientnumber of non-interfering rooks on the grid to be sure that every lit square has a rook in either itsorresponding row or olumn, however we annot know if the number of rooks is or is not maximal atthis stage.8.2.2 Augmented PathsThe augmented paths algorithm �nds an ordering of the rooks whih allows for the maximum numberto be plaed on the grid. We proeed by traversing through all the blank spaes in the rows whih donot ontain a rook. For eah appropriate spae in suh a row, move from the spae to the rook of thesame olumn. That eah suh spae has a orresponding rook in it's olumn is a onsequene of thegreedy algorithm.From this rook, we next traverse to an empty spae on the same row. We will, for onveniene, hoosethe leftmost empty spae and move to the right if neessary as we proeed. There are three possibleases whih we must onsider.1. The olumn of the leftmost spae has not yet been visited by the path. We are then allowed tohoose this spae. If there is a rook in the olumn, then move to it and ontinue as before. If thereis no rook, we may plae an additional rook at the urrent loation. Then rooks previously visitedalong the path onstruted must be shifted 'bak' along the path to aomodate the new rook. Wehave suessfully added a new rook to the hessboard at the expense of moving a pre-existing rookto an unoupied row.2. The olumn of the leftmost spae has already been inluded in the path at some point. We maynot hoose this spae and instead must onsider the next (ounting from the left) blank spae inthe row.3. There are no available spaes in the row. Either all blank spaes have been visited by the alternatingpaths algorithm or all the spaes have x's. We will not be able to augment the set of rooks fromthe blank spae hosen from the original row without a rook.Using the algorithm as stated, we �nd a set of non-interfering rooks for the grid whih over all theblank spaes in the sense that the greedy algorithm overed, after onsidering the paths from all theblank spaes in rows without a rook. Note that there may be several possible arrangements for this setfor eah grid. We will show later that this arrangement of rooks is in fat maximal.8.2.3 Alternating PathsNote that by the method of Augmenting Paths, after eah traversal of the grid we have either added anadditional rook or we are stuk on a rook and unable to move any further. If the latter is appliablethere an exist no suessful augmenting paths from ANY blank spaes on the orresponding olumnand the algorithm will turn on the swith for that olumn, then bak trak to the previous rook on



CHAPTER 8. CITY LIGHTS 65our path in an attempt to �nd another augmenting path. Continue in this manner until all possibilitieshave been exhausted and thus it is ertain that an augmenting path annot be found from our startingsquare. So, for the same reason we light the olumn of our starting square. In this way, for eah startingsquare in the rookless row we produe a number of lit olumns haraterized by the property that foreah suh olumn, its orresponding rook annot be part of a suessful alternating path.The algorithm �nishes by turning on the swithes for eah row whih ontains an unlit rook.To summarize the method, even onsidering the large amount of repetition in the algorithm, it willlearly terminate eventually. At the �nish, we will have a number of olumns seleted whih must be\swithed on". Then, if we selet the rows whih are oupied by rooks that have not been seleted inolumn form, we will have overed all the neessary spaes. Only spaes with x's will be left, and allblank spaes will have been seleted as part of the row or olumn seletions of the rooks. Moreover, thenumber of swithes will exatly math the number of rooks found by the augmenting path algorithm.By Honig's theorem referened in Setion 8.1 we know that this solution must be optimal. The greedyalgorithm has reated the initial onditions and the augmenting and alternating path algorithms have,in onjuntion, found the maximal number of rooks and the minimum number of swithes for our itygrid.8.2.4 The King Rook AlgorithmAnother possible algorithm for �nding the maximal set of rooks and minimal set of swithes is as follows:1. Create an initial rook set using the Greedy Algorithm.2. For eah row without a rook, iterate over eah blank spae in that row: selet the orrespondingolumn of the blank spae. We are left with a olletion of seleted olumns, eah ontaining arook.3. Iterate over the olumns without rooks(a) Iterate over the blank spaes in the olumn(b) If the blank has an unseleted rook in its row, selet that row.() Otherwise, reate an augmenting path using the urrent spae, the rook in its row, and thespae that originally aused the rook to be lit. Remove all seletions and return to step 2.4. Light the olumn of every unseleted rook.The previous algorithm aomplishes the same goal as the �rst method desribed, and indeed it usesthe same priniples of augmenting paths. It has the advantage however, of eliminating a signi�antamount of the repetition involved previously. As before, the �nal rook set is maximal sine the numberof swithes \on" is equal to the number of rooks. This algorithm runs in O(n3) time as the lightingof the olumns or rows is O(n2) and must be repeated a maximum of n times (as many as n possiblerooks).8.3 ResultsConsider the orretness of the method. From the methods onstrution of a solution, we know thenumber of olumns and rows swithed on equals the number of non-interfering rooks on the grid. Buthow do we know that all the blank squares are lit after the algorithms terminate?Two senarios need to be examined. In the �rst senario, a blank square, S, lies in a row with no rookin the row. This blank square must lie in a olumn ontaining a rook; otherwise, the greedy algorithm



66 CHAPTER 8. CITY LIGHTSwould have plaed a rook in the blank square. Now, sine the blank squares row has no rook, the methoddid not �nd any possible augmenting path originating from our starting square S. The alternating pathsalgorithm would have therefore \swithed on" the olumn ontaining the blank square S. And so theblank square is lit.In the seond senario, a blank square, S, lies in a row with a rook R1. The method has swithed oneither the row or the olumn (but not both) ontaining this rook. If the row is swithed on, then theblank square S is lit. However, if the olumn ontaining the rook is swithed on, then we must onsidertwo separate ases:� In the �rst ase, no rook lies in the olumn ontaining the blank square S. But this annot happenfor the following reason: The olumn ontaining rook R1 was swithed on beause R1 was on analternating path and the path was unable to move from R1 in order to �nd a suessful augmentingpath. However, we are able to move from rook R1 along its row to the blank square S. The blanksquare S is in a olumn with no rook. So S is the end of a suessful augmenting path, and so themethod would have plaed a rook in the blank square S as a onsequene (and shifted the otherrooks on the augmenting path aordingly). Now, sine the method did NOT plae a rook in theblank square S, we onlude there must be a rook somewhere else in the olumn ontaining S.This leads us to the seond ase.� In the seond ase, a rook R2 lies in the olumn ontaining the blank square S. The olumnontaining rook R1 was swithed on beause R1 was part of an alternating path. his implies thatthe blank square S was unavailable (it would not lead to a suessful augmenting path). So, theolumn ontaining S must have been swithed on. And so the blank square S is lit.Thus our algorithm, whih gives the same number of swithes as rooks, must light all blank spaes andtherfore be optimal.In addition, we may think about this problem in terms of graphs. An alternate representation of ourity grid is as a bipartite graph with rows represented as verties on one half and olumns as vertieson the other. The edges represent the intersetion of a row and olumn where a possible rook may beplaed or, referring to the original problem statement, where the light must have power. Consider �gure8.2 whih demonstrates a sample grid and the orresponding bipartite graph.

Figure 8.2: A grid and the assoiated bipartite graph.If we approah the bipartite graph from the perspetive of a maximum mathing oupled with a mini-mum over, then there are results whih orrespond to our algorithm. Spei�ally, the number of edges



CHAPTER 8. CITY LIGHTS 67in the maximum mathing is equal to the number of verties in the minimum over. (Honig's Theorem,J. Gross and J. Yeller [2℄) The edges in a maximal mathing orrespond to the number of rooks plaedon the grid and the minimum over orresponds to the swith whih must be turned on.8.4 ConlusionThus we have onstruted an algorithm whih �nds an optimal solution and proven its orretness.In addition, our results are baked by the literature, spei�ally the work related to bipartite graphs,whih are learly related to our grid problem. We feel that the solution of the two dimensional itylights problem has been suÆiently addressed and that future work should be direted towards the threedimensional problem rather than this one.8.5 Future WorkWe reommend that future e�orts be direted towards the three-dimensional ase of this problem. Inthe three-dimensional problem, the lights are arranged on the verties of a retangular or ubi mesh.Figure 8.3 shows a small example where the large shaded verties are the ity lights we want to turnon, and the small verties are the lights that do not need to be lit. Like the two-dimensional ase, eahrow, olumn or pillar of lights is ontrolled by a swith. Again, the goal is to minimize the number ofswithes to be turned on yet make ertain the desired lights are lit.

Figure 8.3: A sample 3D problem requiring more swithes than rooks.In the two-dimensional grid, the minimum number of swithes equaled the maximum number of inde-pendent rooks. Is this true for the three-dimensional mesh? When plaing rooks on shaded verties inthe 3D mesh, at most one rook an appear in any row, olumn or pillar. Figure 8.3 demonstrates a meshwhere seven lights need to be lit, but the minimum number of swithes exeeds the maximum numberof independent rooks. At most three independent rooks may be plaed in the mesh, but four swithesare required to light all seven shaded verties. So, in 3D meshes, the minimum number of swithes is



68 CHAPTER 8. CITY LIGHTSgreater than or equal to the maximum number of rooks.In a larger mesh, permutations of Figure 8.3 may appear several times. Then, 3k independent rookswould require 4k swithes. This would ause a ratio of 4 : 3 swithes-to-rooks. Other arrangements ofshaded verties in a mesh may produe a higher swithes-to-rooks ratio.An algorithm to ompute the minimum number of swithes for the 3D mesh has not been found. How-ever, this problem an be translated into the Set Cover problem. In the set over problem, a olletion ofsubsets exists from a set S. The objet is to �nd the smallest number of subsets whose union overs the setS. In our ase, the set S is the olletion of shaded verties. Eah row or olumn is a subset and we wouldneed to �nd the minimum number of subsets whih together ontain all the shaded verties. Althoughthe general set over problem is NP-omplete, a polynomial time algorithm may exist for our speial ase.Referenes[1℄ R.P. Grimaldi, Disrete and Combinatorial Mathematis: An Applied Introdution. 4th edition,1999. Addison Wesley[2℄ J. Gross and J. Yeller. Graph Theory and It's Appliations. 1999. CRC Press
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