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FOREWORD BY THE PIMS DIRECTORThe Pai� Institute for the Mathematial Sienes is ommitted to providing training for young math-ematial sientists whether they are pursing areers in aademia or in industry.The Graduate Industrial Mathematial Modelling Camp (GIMMC) is one of two omponentsof the annual PIMS Industrial Forum. The other omponent is the PIMS Industrial Problem Solv-ing Workshop whih takes plae soon after the amp. GIMMC was oneived to give students theopportunity to learn about the modern methods of applied mathematis. It also gives them extensivetraining and helps prepare them for the Industrial Problem Solving Workshop.At the workshop students work together in teams, under the supervision of invited mentors. Eah men-tor poses a problem arising from an industrial or engineering appliation and guides his or her team ofgraduate students through a modelling phase to a resolution.The third GIMMC was held at Simon Fraser University, May 23{27, 2000. Forty-one graduate studentsame from North Ameria ame to SFU to work �ve mentors from industry. Almost all the students amefrom 16 universities aross Canada, however one ame from as far away as New York University. The�ve industrial mentors, who ame from University of Minnesota, University of Southampton, EastmanKodak, Rensselaer Polytehni Institute and IBM, provided a wide range of interesting and hallengingproblems. It is my pleasure to announe that the programme was a huge suess.These proeedings ontain the ulmination of eah teams work and they show how muh an be ahievedin a week of hard work.I want to express my appreiation and gratitude to everyone involved in this workshop, in partiularI wish to thank the organisers (Keith Promislow, Mary Catherine Kropinski, Sadika Jungi, LindsayHughes) and mentors (Rahel Kuske, Colin Please, David Ross, Donald Shwendeman, Brett Stevens).The great suess of the �rst three years of GIMMC shows that we have muh to look forward to in thefuture.Dr. Nassif Ghoussoub, DiretorPai� Institute for the Mathematial Sienes
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PREFACEAs preparations for the fourth Graduate Industrial Mathematial Modeling Camp (GIMMC) atUniversity of Vitoria are now well under way, its an appropriate time to reet upon the suess anddiretion of these workshops. There is no doubt that the GIMMC has grown in size from the initial oneheld at SFU in 1998. That one attrated 30 appliants and had a shoestring budget. The urrent editionhas appliations in the 100s and a permanent plae in the PIMS budget. But the real measure of suessof the GIMMC has to be the impat on the graduate students who have attended. Unfortunately, noformal reords have been kept, but there is abundant anedotal evidene: Math Pays O�!Consider two students, Antonio (Tony) Cabal, a graduate student in applied math at University ofWestern Ontario who attended the 1998 GIMMC, and Tom Janiewiz, an undergrad at Simon FraserUniversity who attended the 2000 GIMMC. Tony worked on a problem mentored by David Ross (East-man Kodak) whose goal was to model the of di�usion of surfatants in a thin owing polymer known asa oating urtain. Suh was the impression that Tony made upon David that when a position beameavailable at Kodak later that year, David brought Tony in for an interview. Tony is now employed asa mathematial modeller with Kodak. As a member of the integrated materials and mirostrutureslab he develops and applies mathematial models of uid mehanis and MEMS miroatuators for inkjet printers. The rux of Tony's work involves the analysis and numerial solution of nonlinear PDEs.In addition, Tony has two patents pending for inventions whih have grown out of his mathematialmodels! As David explains it \Tony is doing very well here, he is very good."In Tom's ase, he dove into the Catalyti Converter problem presented by Don Shwendeman fromRensselaer Polytehni Institute. This problem is desribed in Chapter 5 of this Proeedings. A fewmonths after ompleting the GIMMC, armed with his BS in applied math and the writeup of the CatalytiConverter problem, Tom interviewed at Universal Dynamis, a BC high-teh engineering/software �rm.In Tom's words: \When I showed the interviewer the report on the atalyti onverter from the workshop,he did not hesitate too long to o�er me the job." He now works in the Brainwave group at UniversalDynamis with another programmer and two engineers on the mathematial underpinnings of a softwaresystem whih ontrols manufaturing proesses. Tom's work uses \ontrol theory very intensely" and heinludes Laplae Transforms, z transforms, and singular value deompositions among the mathematialtehniques he has applied reently.Tom has been eager to help establish ontats between Universal Dynamis and the PIMS universi-ties; and perhaps to bring a problem to the GIMMC or the Industrial Problem Solving Workshop in thefuture. In this way Math and the GIMMC will ontinue to pay dividends for future students.Keith Promislow and Mary Catherine KropinskiOrganising CommitteeDepartment of Mathematis and StatistisSimon Fraser University
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Chapter 1Catalyti Converter: A SimpleMathematial Solution toUnderstanding OperationPartiipants: Donald Shwendeman (Mentor), Rozita Dara, Tomasz Janiewiz, Margaret Liang, Mo-hammad Oskoorouhi, Maurie Shevalier, Maikel Sianturi.PROBLEM STATEMENT: A atalyti onverter is used by automobiles for ontrolling emissions.It takes unburned gases, whih an ontribute to smog, and \burns" them. The \burning" involves ahemial reation atalyzed by an inert metal loated within the onverter. The hemial reations aretemperature dependent and do not our until the onverter reahes a ritial temperature.In this workshop, the proesses involved in a atalyti onverter are examined, heat transfer, masstransfer, and the hemial reations. A mathematial model of the onverter is developed. The modelis then used to simulate the onverter, whih is similar to the work done by Oh and Cavendishi [3℄.
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2 CHAPTER 1. CATALYTIC CONVERTER1.1 Problem DesriptionWhen a ar starts, the atalyti onverter, whih is old, is exposed to hot gases. The onverter isslowly heated in a non-uniform manner, during whih time no onversion reation ours. When theonverter reahes the ritial temperature, the reation ours. Many of the reations are exothermiand add to the heating of the onverter. The onverter then heats the exhaust gas passing over it whihthen ontributes to the heating of the onverter not yet at the ritial temperature. The onentrationof gases undergoing the reation dereases as more of the onverter is heated. Ideally, when the entireonverter reahes the ritial temperature this onentration will go to zero.In this model many simpli�ations are made. One simpli�ation involves the hemial speies whihundergo the atalyti reation. In this model only CO is onsidered to reat. The reation involved isas follows: CO + 12O2 �! CO2In this model a onentration of O2 is assumed to be onstant. Further the only soure of CO2 isassumed to be from the atalyti reation, so the onentration of CO2 is inversely related to CO.The seond major simpli�ation involves the atalyti onverter. It onsists of many tubules em-bedded in a erami matrix. The erami is oated with platinum. Instead of onsidering thousands oftubules, an average tubule whih is one dimensional in length is onsidered. It has a platinum oatingon top and bottom of the erami. Through the enter of the tubule the exhaust gas ows.In the sueeding setions, a simple one dimensional model is developed. The model is then non-dimensionalized and solved both analytially and numerially for the gas and erami temperature, aswell as the CO onentration.1.2 Methodology of SolutionWe derive the equations based on two priniples, onservation of mass and onservation of heat. Thevariables we will attempt to solve for are,g = Conentration of gas in free spae.s = Conentration of gas on the surfae of the solid.Tg = Temperature of gas inside the onverter.Ts = Temperature of the solid.The Equation for Conservation of Mass in Open Spae isddtA Z ba gdx| {z }i = uA0g| {z }ii �uA�g| {z }iii +Pk Z ba (s � g)dx| {z }iv ;where(i) is the rate of hange of mass of gas inside ontrol volume [a; b℄, A is the ross setional area,(ii) is the ux of gas at inlet a, u is the veloity of gas,(iii) is the ux of gas at outlet b,(iv) is mass transfer of gas to the surfae of the solid, here P is the parameter of the area of theopen spae and k is the mass transfer oeÆient.Terms ii and iii an be written as a single integral, and sine a and b are arbitrary we an eliminatethe integrals. After some simpli�ations we end up with the following equation:A� ��tg + u ��xg� = Pk(s � g): (1.1)After adding up all the ontributions from various soures of heat, we will end up with the followingequation:



CHAPTER 1. CATALYTIC CONVERTER 3ddtA Z ba �gTg�gdx| {z }I = uA�gT 0g �g| {z }II �uA�gT �g �g| {z }III +Ph Z ba (Ts � Tg)dx| {z }IV :where(I) is the rate of hange of heat inside ontrol volume [a; b℄, �g is the spei� heat of the gas, and �gis the density of gas.(II) is the heat ux at a, T 0g is the temperature of gas at a.(III) is the heat ux at b, T �g is the temperature of gas at b.and,(IV) is the heat transfer to the surfae of the solid, h is the heat transfer oeÆient.For reasons similar to equation (1.1) this equation simpli�es to the following:A�g�g � ��tTg + u ��xTg� = Ph(Ts � Tg): (1.2)This is the equation for Conservation of Energy in Open Spae.The onservation of mass on the surfae of solid is obtained by balaning the following two quantitiesZ ba (A+B)~aRdx| {z }� = � Z ba �gPk(s � g)dx| {z }�� ;where,* is moles of the gas generated by reation on the surfae from a to b, here ~a is the area of platinumon the surfae of the solid, B is the ross setional area of the solid, and R is the reation rate.** is the mass transfer of gas from the surfae.After eliminating the integrals we end up with the Equation for Conservation of Mass on Surfae:(A+B)~aR+ �gPk(s � g) = 0: (1.3)The onservation of energy in the solid is represented by the following relationshipddtB Z ba �s�sTsdx| {z }1 = DB�Ts�x jx=b| {z }2 �DB�Ts�x jx=a| {z }3 + Z ba Ph(Tg � Ts)dx| {z }4 + Z ba Pqdx| {z }5 ;where1 is the rate of hange of heat inside the solid in the ontrol volume in [a; b℄, �s is the spei� heatof the solid, �s is the density of the solid.2 is the heat ux in solid at b, here D is the di�usion oeÆient.3 is the heat ux in solid at a.4 is the heat transfer from solid to gas.5 is the heat generation due to reation and q is the heat energy due to reation.If we ombine term 2 and 3 into a single integral, eliminate the integrals from the above equation wewill have the equation for the Conservation of Energy in the Solid:B�s�s �Ts�t = BD�2Ts�x2 + Ph(Tg � Ts) + Pq (1.4)If we analyze the exhaust from the engine we an ome up with the temperature and onentrationof gas. These will give us insight into initial and boundary onditions. Thus Tg and g are known at



4 CHAPTER 1. CATALYTIC CONVERTERx = 0. Furthermore at any given time Tg is known as is g at the inlet. Sine at any instane there is noheat ux to the surrounding environment sine air is a good insulator, so �Ts�x jx=0;L = 0. Finally, sinethe onverter is initially at room temperature Tsjt=0 is known.The next step in the analysis of the above four equations is non-dimensionalization. After onsideringfour di�erent time sales: the path length time sale the mass transfer time sale, the energy time sale,and the temperature built up time sale, we deided that the last is the most appropriate one for aonsideration of the warm up problem. Upon saling the variables, our equations transform into thefollowing non-dimensional system:u ��xg = �(s � g) (1.5)u ��xTg = �(Ts � Tg) (1.6)a�seTs = g � s (1.7)��tTs = Æ �2�x2Ts + �(Tg � Ts) + �a�seTs ; (1.8)where � = PkLAuR � = PhLA�g�guR Æ = DtRL2�s�s  = E�TRT 2s :Here L is the length of the onverter, uR is the veloity of the gas, E is the ativation energy, and �is a onstant of the reation of CO with O2.The initial and boundary onditions translate as follows:� Sine saling eliminated time dependene in equations (1.5) and (1.6), we an drop Tg jt=0 andgjt=0.� Tgjx=0 = 0.� gjx=0 = 1.� �Ts�x jx=0;L = 0.� Tsjt=0 = �1.1.3 Results1.3.1 Analytial SolutionThere are two stages for this problem. The �rst stage is the gentle heating of the onverter, and theseond stage is the reation of hemial speies.In the heating stage, the temperature of the solid is almost independent of the loation, so �2Ts�x2 issmall. sine Æ is small, we an ignore the seond derivative term in equation (1.8). Sine  is big andTs = �1 initially, eTs is small, so we an also ross out the exponential term in equation (1.8). Solvingthe modi�ed equation (1.5)- (1.8), we get g = s and they both derease slowly. The temperature of thegas dereases as it moves down the onverter and heats up the solid. As a onsequene the temperatureof the solid inreases slowly.When the solid reahes its ritial temperature, hemial reation starts, and we reah the seondstage. In this stage, Ts > 0, so we an not ignore the exponential term in equation (1.8). Inside theonverter, the temperature does not hange muh before and after the reation, so �Ts�t = 0, and �2Ts�x2 = 0.



CHAPTER 1. CATALYTIC CONVERTER 5Equation (1.8) beomes: �(Tg � Ts) + �a�CseTs = 0:Solving equations (1.5)- (1.8) gives: g = �(1� Ts)� � ��eTs1+�eTs :Plot of Ts versus g is shown below:
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Figure 1.1: Temperature of the onverter vs. onentration of pollutantEquations (1.5) with (1.7) show that g is a dereasing funtion of loation x. g equals 1 at x=0,and we must follow the urve in �gure above with dereasing g . At the spot where the urve turns,the path must jump to the branh of the urve that is hot, where Ts � 1, whih is also shown in thenumerial analysis below.1.3.2 Numerial SolutionThe equations used in the numerial solution are equations (1.5)- (1.8). The solution obtained was thesimplest and most straight forward. Equations (1.5) and (1.6) are ordinary di�erential equations butthey have a s and Ts dependents. The s dependents of equation (1.5) is removed by substitutingequation (1.7) and assuming Ts is known. Solving for g yields the following:g = exp�Z x0 �u � �a�eTs1 + a�eTs � dx� : (1.9)Ts is assumed to be known along disrete points on x. This equation is solved using the trapezoidal rule.Equation (1.6) is also an ordinary di�erential equation with the following form:T 0g + �uTg = �uTs:The solution has a homogeneous and partiular part whih an be written asTg = e��u x Z x0 �uTse �u sds: (1.10)



6 CHAPTER 1. CATALYTIC CONVERTERThis equation is also solved using the trapezoidal rule.Equation (1.8) is a partial di�erential equation. The �rst term on the right hand side is replaed bythe entral di�erene formula. This then onverts it to an ordinary di�erential equation whih is solvedusing a modi�ed Euler Method.The tehnique to solve the system of equations is as follows:1. Equation (1.9) is solved for g using an initial value of Ts.2. Equation (1.10) is solved for Tg using an initial value of Ts.3. The new Ts is solved for using the modi�ed Euler's Method.This new Ts is then substituted into step 1 and the loop is repeated until Tsjx=0 > 0:80. The resultsof the simulations are shown in Figures 1.2, 1.3, and 1.4.
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Figure 1.2: Temperature of the gas vs. the onverter lengthFigure (1.2) shows the temperature of the gas over the onverter length as a funtion of time. Initiallyat t = 0 and x = 0 the gas has the ondition of Tg = 0. Over the length of the onverter the temperaturedrops to �1 at x = 1. This is expeted sine the heat from the gas is absorbed by the onverter. As timeprogresses the temperature of the gas does not drop as muh over the length of the onverter. Thereis a point where the temperature of the gas inreases. This is due to the onversion reation ourringand the gas absorbs heat from the onverter. As time ontinuous to progress the temperature of the gasinreases until it is in equilibrium with the temperature of the onverter.Figure (1.3) shows the temperature of the onverter over its length as a funtion of time. Initially att = 0 the entire onverter is at its initial temperature of �1. As time progresses the temperature of theonverter inreases due to heat absorption from the gas. There is a point in time where the temperatureof the onverter is greater than that of the gas. This is due to the onset of the onversion reation. Fromthis point in time on the temperature of the onverter raises sharply due to more onversion reationourring. This temperature front travels towards the inlet loated at x = 0 due to heat di�usion withinthe onverter.Figure (1.4) shows the onentration of CO over the length of the onverter as a funtion of time.Initially the onentration of CO does not derease, beause the temperature of the onverter is lowerthan the ritial temperature. As time progresses the onentration of CO dereases as a funtion oflength due onsumption by the hemial reation. At the end of the simulation the onentration ofCO is 1 at the inlet and dereases to 0 at the outlet. This indiates that the onverter is at optimumtemperature resulting in the optimum onversion reation ourring.
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Figure 1.3: Temperature of the onverter vs. its length
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Figure 1.4: Conentration of CO vs. length of the onverter



Chapter 2Queue Compatible Gray Codes andAppliationsPartiipants: Brett Stevens (Mentor), Paul Buskell, Paule Eimovi, Cristian Ivanesu, AnamariaSavu, Abid Malik, Tzvetalin Vassilev, Boting Yang, Zhiduo Zhao.PROBLEM STATEMENT: Our group treated the following aspets of Gray Codes: k-subset of ann set and the problem of the shortest irular overing n-word. In the proess of investigating theseproblems, we enountered several interesting appliations of Gray odes, some of whih will be desribedbelow.

8



CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 92.1 All Subset Covering Words2.1.1 Formal Problem StatementProblem: What is the shortest irular word on n-letters f1; 2; 3; : : : ng suh that every subset off1; 2; 3; : : : ng appears at least one as a sub-word (k onseutive letters for a size k subset).f(n) � nXk=0 k� nk � = n2n�1For the above upper bound, it is loose aording to the numerial results we have some approahes inimproving that: e.g.let Pnk=0 k� nk �=S;Pnk=0 k� nk + 1 �=SS;Pn�1k=0 k� nk �=SA;Pn�2k=0 k� nk �=SB;We have some results for these funtions as below:f(1)=1 f(2)=2 f(3)=3 f(4)=8 f(5)=13S(1)=1 S(2)=4 S(3)=12 S(4)=32 S(5)=80SS(1)=0 SS(2)=1 SS(3)=5 SS(4)=17 SS(5)=49SA(1)=0 SA(2)=2 SA(3)=9 SA(4)=28 SA(5)=75SB(1)=0 SB(2)=0 SB(3)=3 SB(4)=16 SB(5)=55From the table, we get better upper bound funtion SB. That surpasses funtion S.The funtion f(n) de�nes the length of the orresponding gray odes. e.g:n Gray ode1 12 123 12314 241234135 1234531425345We have the known lower bound � nbn2  �.2.1.2 Triangulational Gray CodesIn this setion, we desribe a kind of Gray ode whih is motivated by triangulations. Let S be a �niteset of points in the Eulidean plane. A triangulation of S is a maximal straight-line plane graph whoseverties are the points of S. By maximality, eah fae is a triangle exept for the exterior fae, whih isthe omplement of the onvex hull of S. Without loss of generality, we an assume that all the points are



10 CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONSin the general position, that is, no three points are ollinear. For eah edge whose endpoints are in S, wean assign a number to it, for example, 1; 2; 3; � � � ; n(n� 1)=2. Let n = n(n� 1)=2. Eah triangulationan be represented by a word of bits (i.e., numbers) X i = (x(i)1 ; x(i)2 ; � � � ; x(i)m ), where m is the number ofedges in the triangulation. m is onstant for eah triangulation when S is given. Thus, we have a odeword set X = fX1; X2; � � � ; XNg where N is the number of all the triangulations of S. Let T (S) be atriangulation of S, then an edge e of T (S) is ippable if it is adjaent to two triangles whose union is aonvex quadrilateral. So, the ip of e is an operation of removing e from T (S) and replaing it by theother diagonal of the onvex quadrilateral. In this way, we get a new triangulation T 0(S), and we saythat T 0(S) is a ip of T (S). It is well known that for any two X i and Xj in X there exists a series ofips to transform X i to Xj , say, X i ! X i1 ! � � � ! X ij ! Xj . Thus, (X i; X i1 ; � � � ; X ij ; Xj) is a kindof Gray odes.The triangulational Gray ode is a sequene X i0 ; X i1 ; � � � ; X ik of distint m-bit n-ary ode wordssuh that adjaent words di�er in exatly one bit (regardless of the position). The ode may be de�nedby giving X i0 and the transition sequene T = (t0; t1; � � � ; tik�1), where tl is the labelling number of theedge in whih the ode words X il and X il+1 di�er.An important problem in the triangulational Gray ode is to ompute the shortest distane betweenany two ode words, where the shortest distane means the smallest number of ips needed to transformone word to the other. For this problem, we investigate a speial ase, that is, where S is a onvex pointset. We use the greedy algorithm to attak this problem.The one-vertex emission triangulation is a triangulation eah interior edge of whih has the sameendpoint. For eah word in X , there exists a triangulational Gray ode suh that this ode an betransformed to a one-vertex emission triangulation. So, we have the following algorithm.Algorithm (greedy strategy).Step 0. Given two words X i and Xj in X .Step 1. Selet one vertex v in X i whih has the maximum degree.Step 2. Computer the triangulational Gray ode whih transforms X i to the v-vertex emission triangu-lation.Step 3. Compute the triangulational Gray ode whih transforms the v-vertex emission triangulation toXj .We have observed that the approximation ratio of Algorithm is less than 2.Triangulation in three dimensions is more ompliated than that in two dimensions. A 3D triangu-lation is a partition of the input domain, point set or polyhedron, into a olletion of tetrahedra, thatmeet only at shared faes (verties, edges, or triangles).In three dimensional Eulidean spae, a stritly onvex hexahedron formed from �ve verties anbe triangulated in two ways: either as a pair of tetrahedra separated by a fae, or as three tetrahedrasurrounding an interior diagonal. A 3D ip is one in whih two (three) adjaent tetrahedra of the 3Dtriangulation form a stritly onvex hexahedron, then one replae the tetrahedra by the other possible3D triangulation of the hexahedron ontaining three (two) tetrahedra. The ip an be onsidered to bea fae \ip", where one interior fae is \ipped" for three interior faes or vie versa.Similarly, we an de�ne the 3D triangulational Gray ode. The 3D triangulational Gray ode is asequene X i0 ; X i1 ; � � � ; X ik of distint m0-bit n0-ary ode words suh that adjaent words di�er in exatlyone bit (regardless of the position), where n0 = n(n�1)(n�2)=6 and m0 an vary in words. So the lengthof the words may di�er. However, if the length of the adjaent words is di�erent, then the di�erene ofthe length is 1.An important problem on the 3D triangulational Gray ode is whether for two words in 3D, whetherthere must exist a 3D triangulational Gray ode to onnet them. For this problem, we just onsiderwhether there exists a 3D triangulational Gray ode whih an transform a two-emission 3D triangulationto a one-vertex emission triangulation, Unfortunately, even so speial ase, we annot obtain signi�antresult. We are going to ontinue this work.



CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 112.2 Universal yles for k-subsets of an n-setA universal yle for k-subsets of f1; : : : ; ng is a yli sequene of � nk � integers with the propertythat all subsets of f1; : : : ; ng of size k appear exatly one onseutively in the sequene. As an examplethe word 1 2 3ontains f1 2g f2 3g and f3 1g only one i.e. all 2-subsets of f1; 2; 3g.Problem: Given n and k is there any universal yle and if there is how an we �nd it within a reason-able amount of time?A neessary ondition for the existene of the word is:k divides � n� 1k � 1 �There are some trivial ases:� k = 1 the universal yle is 1 2 3 : : : n� k = n the universal yle is 1 2 3 : : : n� k = n� 1 the universal yle is 1 2 3 : : : nA nontrivial ase is k = n� 2.Result: We have established that is impossible to onstrut a universal yle in this ase even when theneessary ondition is satis�ed (i.e. n is odd)Next we desribe the ideas whih led us to this result.Assuming that suh a word exists then the following must happen:� Somewhere in the word, there is a length n subword that is the n-set 1 2 3 : : : nProof: We an assume wlog that the universal yle ontains:1 2 3 : : : n� 2 x y zSine 2 3 : : : n�2 x is a (n�2)-subset x must be 1; n or n�1. If x is 1 then the subset 1 2 3 : : : n�2is repeated. So we may assume wlog x = n � 1. The allowed values for y are 1 or n. If y is n weare done. Otherwise y = 1 and the next position z is 2 or n. Continuing in this way if n does notappear we get a ontradition: 1 2 3 : : : n�2 appears twie. So n has to appear whih implies thatthe yle has to ontain 1 2 3 : : : n� If m � k then a m-subset an appear at most:1n�m+1�k � n� 1k � 1 � times� We already know that the pattern 1 2 3 : : : n appears somewhere inside of the yle. If we provethat 2 3 : : : n� 1 are fored after 1 2 3 : : : nposition : 1 2 : : : n n+ 1 n+ 2 : : : 2n� 2number : 1 2 : : : n 2 3 : : : n� 1



12 CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONSthis will ontradit the fat the n � 2-subset 2 3 : : : n � 1 appears just one and so the word annot exist.Proof:We look for the numbers whih an appear on positions n+ 1 n+ 2 n+ 3 : : : 2n� 2.position : 1 2 : : : n n+ 1 n+ 2 : : : 2n� 2number : 1 2 : : : n ? ? : : : ?The �rst position in whih 2 an appear is n+1, the �rst position on whih 3 an appear is n+2,...,the �rst position in whih n� 1 an appear is 2n� 2.So n � 1 is fored to be in position 2n � 2 beause otherwise 1 2 3 : : : n � 2 are in positionsn+1 n+2 : : : 2n� 2, not neessarily in this order and so a subset is repeated. Also n� 2 is foredto be in front of n� 1 and so on. This is proved by the indution whih follows.Suppose that for a ertain i � 1 we have the pattern, so n-i-1 is not in this position.pos : �i : �1 1 : n� i� 2 : n� i+ 1 : n n+ 1 : 2n� i� 2 2n� i� 1 : 2n� 2num : ? : ? 1 : n� i� 2 : n� i+ 1 : n 1 : n� i� 2 n� i : n� 1In the �i; : : : ;�1 position an be any i-subsequene of fn�i; : : : ; n�1; n; g. But any i-subsequeneof fn� i; : : : ; n� 1; n; g an be joined with f1; 2; : : : ; n� i� 2g and this gives a n� 2 subsequenewhih appears twie.This relies on the fat that the ase k = n� 1 is trivial and an universal yle is 1 2 : : : n. To seethis remove f1; : : : ; n� i� 2g from the pattern and getn� i+ 1 : : : n n� i : : : n� 1whih is aeptable for k = n� i and the set fn� i; : : : ; n� 1 ng q.e.d.One we know that a universal yle does not exits we may ask what is the largest word whih does notontain a n� 2-subset twie. In general this word has the length 2n� 3 and is:1 2 3 : : : n 1 2 3 : : : n� 3 nAnother nontrivial ase is n� k = 3The neessary ondition for the existene of the word is n = 1; 2 (mod 3). Hene when n is multiple of 3the yle does not exist. For the other values of n we ould not prove or disprove that a universal yleexists in general exept the values shown below. The omputer searh shows some ases when a yledoes exist:� k = 4 n = 7The yle whih ontains all the 5-subsets of f1; 2; 3; 4; 5; 6; 7g is:1 2 3 4 5 1 2 3 6 4 1 2 7 5 3 1 6 7 4 2 5 6 3 7 4 1 5 6 2 7 3 4 5 6 7 1� k = 5 n = 8The yle whih ontains all the 5-subsets of f1; 2; 3; 4; 5; 6; 7; 8g is: 1 2 3 4 5 6 1 2 3 4 7 5 1 2 3 86 4 1 7 3 8 5 4 2 7 6 3 8 1 5 4 7 6 8 2 5 3 7 6 1 2 5 8 4 6 1 2 7 8 4 3 6 5 7 8� k = 7 n = 10 (Example found by Brad Jakson) The yle with 5 fold symmetry whih ontainsall the 7-subsets of f1; : : : ; 10g is:2 3 4 5 6 8 1 2 3 5 6 7 10 2 5 8 9 3 7 10 4 5 9 2 3 4 7 8 10 2 3 5 7 1 2 6 10 4 7 10 1 2 4 ...General results that we found are the following:� Somewhere in word, there is a length n� 1 word that is the n� 1-set 1 2 3 : : : n� 1Proof: is similar to that in ase n� k = 2� A n� 4-subset will appear at most twie inside of the yleUsing the results obtained for n� k = 1; 2; 3 we an not say what happens for general n and k.



CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 132.2.1 ExampleConsider the irular word 1234531425345Note that it ontains as subwords (respeting the irular nature) all subsets of the 5-element setf1,2,3,4,5g, alled the alphabet of the word.Here is how I arrived at this word. First, I looked at the shortest words ontaining all subsets of aone, two, three, and four-element alphabet. These are, respetively:
1   

1   2

1   2   3 

1   2   3   4   1   3   2   4Starting with the above word 1, write eah word as a row in an array, followed underneath by thesame word with everything shifted to the left by one spae (remember that eah is a irular word).Continue until as many rows as there are letters in eah word have been added. The resulting arraysare:
2   1

1   2 1   2   3

2   3   1

3   1   2

1   2   3   4   1   3   2   4

2   3   4   1   3   2   4   1

3   4   1   3   2   4   1   2

4   1   3   2   4   1   2   3

1   3   2   4   1   2   3   4

4   1   2   3   4   1   3   2

3   2   4   1   2   3   4   1

2   4   1   2   3   4   1   3

1

Note that eah main anti-diagonal onsists entirely of the highest letter in eah alphabet, and thegeneral \striped" appearane of the anti-diagonals.Looking at suessive pairs of arrays, we see that the larger array ontains a portion of the smallerone, whih is boxed below:
2   1

1 1   2 1   2   3

2   3   1

3   1   2

1   2   3   4   1   3   2   4

2   3   4   1   3   2   4   1

3   4   1   3   2   4   1   2

4   1   3   2   4   1   2   3

1   3   2   4   1   2   3   4

4   1   2   3   4   1   3   2

3   2   4   1   2   3   4   1

2   4   1   2   3   4   1   3This led me to see if an extension of the last array ould produe a larger array ontaining a wordon a �ve-letter alphabet with the desired property.To understand my motivation, note that eah of the \stairase" strutures below:
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2   1

1 1   2 1   2   3

2   3   1

3   1   2

1   2   3   4   1   3   2   4

2   3   4   1   3   2   4   1

3   4   1   3   2   4   1   2

4   1   3   2   4   1   2   3

1   3   2   4   1   2   3   4

4   1   2   3   4   1   3   2

3   2   4   1   2   3   4   1

2   4   1   2   3   4   1   3are simply formed by k-yles on eah k-alphabet ating on the original boxed areas. This led me tolook for a 4-yle that I ould put in the following spae in a larger array:
.    .    .    .    .    .    .    .    .   .

5                      5

4   5                     5

3   4   5                     5

2   3   4   5                     5

1   2   3   4   5                     5

.    .    .    .    .    .    .    .   .    .   

.    .    .    .    .    .    .    .   .    .The striping phenomenon would then allow us to retrieve the word from the top row of the array.I soon hit upon the following:
5   3   1   4   2   5

.    .    .    .    .    .    .    .   .    .   

.    .    .    .    .    .    .    .   .    .

.    .    .    .    .    .    .    .    .   .

1   2   3   4   5   3   1   4   2   5

2   3   4   5   3   1   4   2   5

3   4   5   3   1   4   2   5

4   5   3   1   4   2   5

The top row as it sits only ontains all of the 2-subsets of the 5-alphabet. It was found to lak the 3-subsets 1,4,5 and 2,3,5; adding 345 to the end gave the word shown at the beginning, whih does ontainall subsets of the 5-alphabet as irular subwords. In the ourse of our investigation, we omputed thatthe lower bound for suh a word turned out to be thirteen haraters, rather than �fteen. Analogouswork on �nding a word on six letters ontaining all subsets of 6 letters ontinues.2.2.2 AttemptsInitially, the problem of generating overing n-words and their substrings attrated our attention fromthe point of view of the following data struture motivated by binary gray oding of a given alphabet.Let fa1; a2; : : : ; amg be an m-alphabet. Then, the following data struture will store all the k-words,where k 2 f1; 2; : : : ; ng:
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c
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2   mw
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a   a  .....   a1 2     m
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ij

ij

ij

ij

!len(w ) i

This matrix is three dimensional and ontains the following information. The rows represent anordering of the given m-alphabet, from the �rst harater to the last. The rows represent k-wordsformed from haraters of the given alphabet, as follows. The elements of this matrix are binary digits,with 1 in the olumn and row of the matrix if the given word ontains the given harater in the givenrow. Thus eah row represents a word with a given sequene of the haraters of the alphabet representedas a bit string. Along the third dimension are all the k! permutations of a word of length k over the m-alphabet. Enoding the permutations of a given brought us to seek a binary Gray ode for permutations.We onsidered anonial deomposition of permutations into transposition sequenes unique to withina permutation of the natural ordering of the neutral element of the permutation group. Assuming eahtransposition ould be applied at most one and in a unique sequene, we onsidered a least hangeordering of binary transposition sequene odes representing a given permutation. This would be thebinary Gray ode representing a given permutation.Our purpose in retaining a binary oding sheme in the entire data struture was to enable a booleanomparison of the overing word w1 with all its sub-words w2 : : : w2n suh that if the overing word insome boolean ombination with all its sub-words yields 0 (a \ollapsing funtion") then the overing wordwould ontain all sub-strings made from its haraters as sub-words, whih would indiate a solution tothe problem for a given word length.



Chapter 3Optimal Design of aMiro-Eletrial-Mehanial SystemsAtuatorPartiipants: David Ross (Mentor), Kyle Biswanger, C. Sean Bohun, Lloyd Bridge, Leevan Ling, Do-minique Noel, Simal Saujani, Daniel Spirn, Fridolin Ting.PROBLEM STATEMENT: Fundamental to the design of an inkjet printer is preise delivery of inkfrom the printer to the paper. One proposed method is to manufature a tiny beam of metal in suha way that when one end is heated, the beam bends thereby projeting a tiny volume of ink onto thepaper.A preliminary beam has been manufatured at Eastman Kodak with the overall dimensions 100�m�20�m�5�m. This partiular beam onsisted of two materials, aluminium (Al) and silion dioxide (SiO2)in a ratio of 3:2. A voltage pulse of 10�s was applied to the beam heating it up to about 400K andresulting in a maximum rate of deetion of about 0:2ms�1.The problem set forth was to �rst model the beam desribed above in the hopes of understanding theunderlying physis. The seond goal was to generalize the model to design a beam with perhaps morelayers that ahieves a maximum deetion rate of at least 1ms�1. Beause of the nature of the uid, thetemperature of the beam must not exeed about 400K. In addition, the overall dimensions of the beamare required to be about the same as the preliminary beam disussed above. As a result, the only freeparameters are the hoie of materials for the beam and in whih amounts they should be hosen.
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CHAPTER 3. MICRO-ELECTRICAL-MECHANICAL SYSTEMS ACTUATOR 173.1 IntrodutionSolving the equations for the full beam/uid ow, even numerially, is a formidable task, and now weshall proeed to simplify the model as muh as possible. Of ourse, we intend to justify this proess inthe subsequent analysis.The assumptions:� We may treat the problem with one spae dimension. Moreover, we shall neglet alulation of theow �eld and opt to model the e�et of the uid on the beam with a parameterization sheme.� The ow arries little uid away (relative to the length sale of the beam) and so the onvetiveterm in temperature onservation equation may be dropped.� We assume eah layer of the beam to be homogeneous and the heating to be uniform; onse-quently, we expet a uniform temperature pro�le. Furthermore, we assume linear elastiity theoryis suÆient to model the beam, and that boundary onditions may be applied at the initial (un-strethed/ontrated) positions. We shall also neglet the thermal expansion of the oxide.These simpli�ations are impliit in what follows.3.2 Heat Transport in the SystemOf entral importane in the modelling of this problem is the transport of heat from the Al into theSiO2 and surrounding Isopar uid. A urrent is supplied to the aluminium, whih generates an amountof heat. Sine the thermal expansion oeÆient of Al is large with respet to SiO2, the beam will bend.If we ould determine the temperature of the aluminium as a funtion of time, we ould approximatethe displaement of the end of the beam and thus estimate the beam speed.Listed below are some of the thermal properties of of Al, SiO2 and the surrounding Isopar uid. Thedensity of a material is denoted as � while the spei� heat and ondutivity are denoted as v and krespetively. Material � (g m�3) v (J g�1K�1) k (J m�1s�1K�1)Fluid (Isopar) 0.77 2.1 1� 10�3Silion Dioxide 3.4 0.7 1:38� 10�2Aluminium 2.7 0.5 2.31With these values, the �rst question that we ask is an we disregard temperature variations inthe oxide? If the temperature variations in the oxide layer are negligible, then thermally, we ouldsimply model the beam as being made out of aluminium. The rule of thumb is that in time �t, heatdi�uses a length �x given by the expression �x = (k�t=�v)1=2. Hene for SiO2, heat di�uses a lengthapproximately 1�m in 5�s. Sine the depth of the SiO2 is approximately 3�m, we annot disregard thetemperature variations in SiO2. Therefore, we must aount for both materials.The equations governing the heat ow are:�f vf�t = kf�xx (Fluid)�oxvox�t = kox�xx (Silion Oxide)�AlvAl�t = kAl�xx +Q (Aluminium) (3.1)where Q = 5:35� 107 Watts m�3. The boundary onditions are determined by the empirial fat thattemperature is ontinuous and energy is onserved aross the interfae boundaries. These onditionsimply �(interfae�) = �(interfae+)k��x(interfae�) = k+�x(interfae+) (3.2)
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Isopar Oxide Al Isopar
t = 1�s
t = 5�s
t = 10�s

� � �0(K)

x (�m)Figure 3.1: Temperature through a ross setion of the beam as heat is applied.at any interfae. In addition, at in�nity the system should be at room temperature so that �(x =�1; t) = �0 = 300K.We deided to limit our sope to the one dimensional problem. Notie that the one dimensional heatow equation in aluminium an be greatly simpli�ed by integrating. As a result, we get�AlvAl ��t = kf�x��� � kox�x���bLAl +Q (3.3)where ��t is the rate of hange of the average temperature of aluminium, LAl is the width of the aluminium,and b and  denote boundaries oxide/aluminium and aluminium/uid respetively. Sine the ondutivityk of aluminium is so high, it an be assumed that the temperature variation aross the aluminium iszero. Hene the temperature of aluminium is spatially uniform. This fat greatly improves the eÆienyof our numerial shemes. The numerial sheme we use did not make use of equation (3.3) but ourresults justify this approximation. The resulting temperature pro�le is displayed in �gures 3.1 and 3.2.3.3 Modelling the BeamFor the beam we onsider a laminated beam with N layers labelled f1; 2; : : : ; Ng where layer j has aYoung's modulus of Ej , a density of �j and a thikness of hj �hj�1. With this notation, we take h0 = 0and hN = H the overall height of the laminated beam. When the beam is bent the surfae outside theurve is strethed while the surfae inside the urve is ompressed. Internal to the beam there must besome surfae whih is neither strethed or ompressed. This surfae is known as the neutral surfae.The loation of this neutral surfae, y0, is found by summing the stress (fore per unit area) in eah of
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� � �0(K)

t (�s)Figure 3.2: Temperature of the aluminium layer for a t = 10�s heating pulse.the layers and noting that the resultant stress is zero. This proedure givesy0 = NXj=1Ej(h2j � h2j�1)2 NXj=1Ej(hj � hj�1) : (3.4)It is interesting to note that if the Young's modulus was the same for all of the N layers then the aboveexpression beomes a telesoping series and the neutral surfae would lie at hN=2 = H=2 whih is theheight of the entre of mass if the layers also all have the same density.3.3.1 Beam EquationHaving loated the neutral surfae, one an determine the beam equation for this laminated struture.This is aomplished by omputing the moment in eah of the N layers at two horizontal positions,x = x0 and x = x0 + �x. The details of this derivation are simple yet tedious. The resulting beamequation is �Hutt +Duxxxx = Pwhere �H = NXj=1 �j(hj � hj�1); D = 13 NXj=1Ej(y � y0)3���hjhj�1 (3.5)



20 CHAPTER 3. MICRO-ELECTRICAL-MECHANICAL SYSTEMS ACTUATORare the weighted density and the omposite exural rigidity respetively. and P is the external pressure.If Ej = E 8j then using (3.4) we �nd D = EH3=12 as one would expet for a uniform beam of thiknessH . The value of E and � for the various materials are listed below.Material E (g m�1s�2) � (K�1)Silion Dioxide 6� 1011 ' 0Aluminium 20� 1011 16� 10�63.3.2 Boundary ConditionsIn order to be well posed, the equation for the beam requires a number of boundary onditions andinitial onditions. The initial onditions are simply that the beam has no veloity and is not bent. Thatis, u(x; 0) = 0 = ut(x; 0).There are four boundary onditions. Sine the beam is �xed and lamped at the origin x = 0 weeasily identify the onditions u(0; t) = 0 and ux(0; t) = 0. In addition, the free end, x = L, does notexperiene any shear stress and as suh, uxxx(L; t) = 0.The fourth boundary ondition arises from the appliation of heat. Sine the beam is laminated,eah of the layers will expand at di�erent rates when heated. This imbalane in the strains of the variouslayers reates a moment at the end x = L. We derive this temperature dependent moment next.We �rst reall that the stress and strain are related byFjAj = Ej�ljlj (3.6)where Ej is the Young's modulus of the jth layer. Therefore a layer with Aj =W (hj � hj�1) will haveFj = EjW (hj � hj�1)�lj=lj . The magnitude of lj will depend on the layer. Before any heating takesplae, eah of the layers has a length denoted as l0 and if we now heat the beam, eah of the layersexpands at a di�erent rate. Let �j denote the expansion rate of the jth layer so that lj = (1 + �j�)l0is the amount the jth layer would have expanded at the temperature � if it was not onneted to theother layers. If we set l to be the mean amount of expansion of the beam as a whole after the variouslayers have expanded we have for the jth layer thatFj = EjW (hj � hj�1) l � ljlj :However, these individual fores must anel out so that PNj=1 Fj = 0. Solving for l givesl = NXj=1Ej(hj � hj�1)NXj=1 Ejlj (hj � hj�1) : (3.7)The quantity of interest is the the ratio (l� lj)=lj and using the fat that even for temperatures on theorder of 400K, �j� � 1 so using (3.7) gives the approximationFjAj = Ej l � ljlj ' �Ej(��� �j) where �� = NXj=1Ej�j(hj � hj�1)NXj=1Ej(hj � hj�1) : (3.8)



CHAPTER 3. MICRO-ELECTRICAL-MECHANICAL SYSTEMS ACTUATOR 21The moment generated by eah layer satis�es �Ej(����j) = Ej(y� y0)uxx(L). Multiplying by a fatorof (y� y0) and integrating over the layers, one �nds the total e�etive moment at the point x = L to beuxx(L; t) = �(t)2D NXj=1Ej(��� �j)(y � y0)2���hjhj�1 = ��(t) (3.9)whih is linear with respet to the applied temperature.3.4 Beam Fluid InterationConsider the following version of the beam equation that aounts to at least a �rst order approximation,for both the drag and the visosity of the uid(� + �H)utt = �Duxxxx � kut: (3.10)An expression for the natural frequeny of the beam an be obtained by using separation of variables.Let u(x; t) = F (x)G(t) and onsider a slightly simpli�ed version of the boundary onditions where thebeam is not heatedu(x; 0) = ut(x; 0) = u(0; t) = ux(0; t) = uxx(L; t) = uxxx(L; t) = 0:Under the separation, one obtains two expressions. For the spatial variableF iv � �4D F = 0; F (0) = F 0(0) = F 00(L) = F 000(L) = 0and for the temporal variable(� + �H)G00 + kG0 + �4G = 0; G(0) = G0(0) = 0: (3.11)Fousing on the spatial equation, we �nd thatF (x) = A �sin� �xD1=4�� sinh� �xD1=4��+B �os� �xD1=4�� osh� �xD1=4��where A and B are onstants. The eigenvalues for � arise from the boundary onditions at x = L.Computing the seond and third derivatives at L leads to the ompatibility ondition���� � os � � osh � sin � � sinh �� sin � � sinh � � os � � osh � ���� = 0 with � = �LD1=4 :This implies that the eigenvalues satisfy 1 + os � osh � = 0 whose solutions are given by �0 = �1:8751and �n ' �(2n+ 1)�=2 for n 2 N. The fundamental frequeny and damping of the beam an now bedetermined by looking at the temporal equation.3.4.1 Determining � and kWe observe from the experimental data available that, throughout its motion, the beam osillates aboutsome varying mean deetion. Not only this, but it is lear that, one the heat supply to the beam isturned o�, the amplitude of these osillations in the uid dereases in time. Thus, into our model, weinorporate terms assoiated with a damped harmoni osillator system, whih will model the e�et ofthe visous uid on the motion of the beam.Sine our model is one dimensional, we shall onsider the free end of the beam, osillating in onedimension in the uid, as analogous to the mass in a mass-spring-dashpot system. For a mass m,



22 CHAPTER 3. MICRO-ELECTRICAL-MECHANICAL SYSTEMS ACTUATORattahed to the free end of a spring with spring onstant , and moving in a dashpot ontaining uidwith damping oeÆient 2b, the motion of the mass is governed bym�x+ 2b _x+ x = 0: (3.12)Osillatory solutions of this equation have the formx(t) = Ae�bt=m sin rm� b2m2 t! ;we identify the frequeny of osillation as (m�b2)1=2=m and the deay rate as b=m. Now, the frequenyof osillations in uid appears onstant, and was measured as 3:45� 105 Hz. The appropriate data forfrequeny and damping alulations is summarized in the table below.Fluid Fundamental Amplitude AmplitudeFrequeny at 15 �s at 35 �s(MHz) (�m) (�m)Air 0.484 0.27 0.26Isopar 0.345 0.293 0.086The deay rate, measured over the remaining time after 20�s, is b=m = 6:13 � 104. Following theseparation of variables method we hoose the fundamental mode  = �40, and so�40m � (6:13� 104)2 = 4�2f2Isopar = 4:70� 1012;where �0 = �40D=L4. That is,m = �40D4:70� 1012L4 = 2:63� 10�12 DL4 and b = 1:61� 10�7 DL4 :A omparison of (3.12) with the separation of variables (3.11) method yields� = 2:63� 10�12 DL4 � �H; k = 3:22� 10�7 DL4 (3.13)as �rst approximations for the onstants to be used in to math the given data. These numbers are latertuned to math the data as lose as possible.3.5 ResultsAs there were two goals in this projet two ases were onsidered. The �rst ase was a beam in theratio of 2:3 of Al to SiO2 in the Invar uid. While in the seond ase, a ratio of 1:2 was hosen tomaximize the oupling moment indued by the temperature. In this seond ase the beam is slightlythinner and therefore gets hotter for the same amount of energy input. The parameters for these twoases are summarized below. Tmax = 397:3K in ase 2:3 and 402.4K in ase 1:2 respetively.Parameter Case 2:3 Case 1:2�H 1:56� 10�3 9:50� 10�4D 10.442 2.2542� 4:755� 10�2 7:985� 10�2Q 4:08� 107 6:80� 107� 1:32� 10�3 1:32� 10�3k 123 73.8
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Figure 3.3: Position of the end of the beam with respet to timeThe values of � and k are determined by mathing the solution to the given experimental data in thease 2:3. One these values are known, the same value of � is used in the ase 1:2 as the same volumeif Invar uid is being aelerated in both ases. The value of k sales with the thikness of the beam.For a given geometry a solution of the heat equation (3.1-3.2) determines �(t). This time dependenttemperature is then applied as a boundary ondition for the beam equation (3.5), (3.8-3.10). Numerialsolutions for the two ases are plotted below along with the experimental points. The agreement isastounding.3.6 Conlusions and DiretionsOur initial goal was to aelerate Isopar uid to a speed of 1ms�1 over 10�s using a beam that deetswhen heated. Our �rst objetive was to develop an appropriate physial model for the problem. The keysimplifying assumptions inluded treating the problem as one dimensional, relying on the linear beamequation and negleting the details of the uid ow.We were able to reprodue experimental results with high agreement. Furthermore, applying the theory,we were able to improve the speed of the uid by a fator of 2.Although we did not obtain our objetive, we did make signi�ant progress. The next step would be toonsider more than two layers and possibly di�erent materials. Despite the inherent diÆulties, studyingthe two dimensional problem would be of interest. There's also evidene that an insulating layer wouldinrease speed; this may inrease the relaxation time beyond aeptable limits.



Chapter 4Temperature E�ets on a River orEstuary Due to the Constrution ofa Power StationPartiipants: Colin Please (Mentor), Ibrahim Agyemang, Matthew Bolton, Samantha Carruthers,Irina Dinu, Sha�qul Islam, Jung Min Lee, Lila Rasekh, Sirod Sirisup, John Frederik Williams.PROBLEM STATEMENT: It is expeted that the onstrution of a power station on a river willhave some pollution e�ets. We are partiularly interested in the e�et of the inrease in temperatureaused by the release of 2� 109 J s�1 of heat from the power plant. The onern is that this inrease intemperature may have possible eologial e�ets on the river.Three di�erent situations are modelled.
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Figure 4.1: Idealized river with power station. v1 = 0:2m s�1; l1 = 10m; T1 = 288K.4.1 IntrodutionWe assumed that both river and estuary are hannels with onstant width. We also assume that withouta power station the temperature remains onstant and does not vary with depth. The density of thewater is assumed onstant beause the temperature does not vary enough for it to be signi�ant. Finally,the ow rate of the pipe to and from the power plant are taken to be 100 m3s�1.Three situations are onsidered. The �rst is where we have a power station on a river and the intakepipe is upstream from the outow. The seond is where we reversed the position of the intake and outowpipes. In the above instanes, we onsidered the ase where there is no heat loss to the surroundingsand the ase where there is a natural heat loss whih is linearly dependent on the temperature. The�nal situation is the ase of having a power station on an estuary. Here we must take into aount thatthe veloity is time dependent, and the temperature is dependent on both time and spae.The following variable notation is used throughout.v := the veloity of the river (assumed plug ow - no depth dependene)l := the depth of the river� := the density of water (assumed onstant - 1000 kgm�3)w := the width of the river (assumed onstant - 100m)T := the temperature of the riverg := the aeleration due to gravity (9:81ms�2)Q := the heat energy added by the ondenser (2� 109 J s�1)E := the ow rate of the water through the pipes (100m3s�1)P := the hydrostati pressurep := the spei� heat of water (4:186 kJkg�1K�1)h := the surfae heat transfer oeÆient (30 J s�1m�2K�1)To model these situations we onsidered what was ourring aross the three boundaries of the river (see�gure 4.1) using the onservation laws of: mass, fore, and energy. We assumed that there is no heatondution in our model and the heated water is disharged vertially from the outlet.4.2 Solution of Idealized Models4.2.1 Case 1. Intake Upstream of OutowNote that the variable subsripts refer to the region from whih thee orresponding quantities are taken.Also note that vp refers to the veloity inside the pipe (assumed onstant: 2m s�1), and Tp is thetemperature inside the pipe.



26 CHAPTER 4. TEMPERATURE EFFECTS OF A POWER STATIONMass ConservationThe amount of uid entering any juntion must equal the amount of uid leaving the juntion. Thisgives two relations, �v1l1w = �v2l2w + �E (1{2 juntion)�v2l2w + �E = �v3l3w (2{3 juntion)Fore Balane (Newton's seond Law)Balaning the fores at eah juntion also gives two expressions, where the the hydrostati pressure isgiven by Pi = (li � z) �g + Pair.w �R l10 P1dz � R l20 P2dz � R l1l2 Pairdz� = �wl1v21 � �wl2v22 (1{2 juntion)w �R l20 P2dz � R l30 P3dz � R l3l2 Pairdz� = �wl2v22 � �wl3v23 (2{3 juntion).Conservation of EnergyFinally, equating the energy aross any juntion gives,wv1l1 � 12�v21 + �pT1��E � 12�v2p + �pT1� = wv2l2 � 12�v22 + �pT2� (1{2 juntion)wv2l2 � 12�v22 + �pT2�+E � 12�v2p + �pTp� = wv3l3 � 12�v23 + �pT3� (2{3 juntion)where the added heat from the power station is �EpTp = �EpT1 +Q.SalingThese nonlinear algebrai equations pose a formidable problem. In order to simplify the equations,appropriate dimensionless salings were introdued in the hope that small parameters would be foundthat may be negleted. We setli = (1� Æi)l1; vi = �iv1; Ti = (1� �i)T1where i 2 f2; 3g. In addition we identify the following dimensionless parameters:�1 = Ev1l1w � 12 ; �2 = v21gl1 � 4:1� 10�4; �3 = v212pT1 � 1:7� 10�8;�4 = v2pv21 = 100; �5 = 2QE�v21 1:0� � 106:SolutionWith these salings the equations beome: 2 = 2�2(1� Æ2) + 1 ;1 = �3(1� Æ3) ;1� (1� Æ2)2 = 2�2[1� �22(1� Æ2)℄ ;(1� Æ2)2 � (1� Æ3)2 = 2�2[�22(1� Æ2)� �23(1� Æ3)℄ ;C1 = �3�2(1� Æ2) + �2(1� Æ2)(1� �2) ;�32�3(1� Æ2) + (1� �2)(1� Æ2)�2 + C2 = �3(1� �3)(1� Æ3) + �33�3(1� Æ3)



CHAPTER 4. TEMPERATURE EFFECTS OF A POWER STATION 27where C1 = 1 + �3 � �1�3 � �1 and C2 = �4�1�3 + �1 + �5�1�3. Reognizing the fat that manyparameters in the system are so small that they are negligible, the system is easily solved to leadingorder: Æ2 = 0 ; �2 = 0 ; �2 = 0:5 ;Æ3 = 0 ; �3 = ��1�3�5 ; �3 = 1 :Physially this means that the height of the river is essentially unhanged, the temperature inreasesby approximately 2:3ÆC at the outow, and the veloity in region two is half the normal veloity of theriver.4.2.2 Case 2 - Reversed FlowWith an understanding of the important salings in this problem we an repeat the analysis for the asewhere the inow and outow are reversed. From the analysis above, we an immediately write down thesolution to the new problem. Æ2 = 0 ; �2 = ��1�3�5 ; �2 = 2 ;Æ3 = 0 ; �3 = ��1�3�5 ; �3 = 1 :Physially this means that the temperature inreases only at the outow and by the same amount asobtained earlier. This is beause instead of the entral setion moving more slowly, now it moves faster.The fat that the reirulated water does not get hotter and hotter may seem ounterintuitive at �rstglane. However, in this ase the outow mixes with the entire volume of the inow diluting the amountof heat added. In summary this analysis has shown that the temperature downstream must inrease bythe same amount regardless of whether the outow is upstream or downstream.4.2.3 Case 3 - Heat LossWith some insight into the problem, we an onsider the more ompliated ase of aounting for heatloss. Assuming temperature loss is linearly proportional to the di�erene between the temperature at aposition x and the natural temperature T1, where the proportionally onstant h = 30 J s�1m�2K�1, wehave the energy equation: dTdx = h�lpv [T1 � T (x)℄ ; T (x0) = T1One an easily solve to �nd T (x) = T1 h1 + e�(x�x0)i ; x � x0where x0 is the distane between the intake and outow pipes and 1= = �lpv=h � 280 km. Thus, thetemperature deays exponentially as you go downstream with a deay length of approximately 280 km.This means that the temperature di�erene deays by a fator of e for every 280 km you go.4.3 Flow in an EstuaryAn estuary is a river system that is a�eted by large tides. To understand the ow in an estuary, weassume a river as in setion 2 with the addition of a dam at one end. Through a weir in the dam, weimagine a onstant rate of ow into the water. This models feeding into the river upstream from thetide without having to worry about hanging water levels in the water network upstream. We know thatthe tide rises and falls periodially whih gives us a time dependent boundary ondition at one end ofour estuary.By onsidering onservation of mass and energy we have the shallow water equations�l�t + �(vl)�x = 0 ; �(vl)�t + ��x �12gl2 + v2l� = 0



28 CHAPTER 4. TEMPERATURE EFFECTS OF A POWER STATION
R Dam OeanFigure 4.2: An idealized estuary.with the boundary onditionsR = l(0; t)v(0; t)w ; l(x0; t) = l0 + l1 os(!t)where R = 1400m3s�1, w = 100m, l0 = 10m, l1 = 1m, ! = 2�=12:4 hrs, x0 = 100 km.In dimensionless form we then have�h�� + ��(uh)�y = 0 ; �(uh)�� + � ��y (u2h+ �1h2) = 0with u(0; �)h(0; �) = �2 ; h(1; �) = 1 + � os �and where � = !t, l0h = l, x0y = x, v0u = v,v0 = !l1x0l0 � 1:4ms�1 ; � = l1l0 = 110 ; �1 = l0g2v20 � 24:8 ; �2 = Rl0wv0 � 1 :Assuming that h = 1 + �h1(y; �) and u = 0 + �u1(y; �) ;we get �h1�� + ��u1�y = 0 and �u1�� + 2��1 �h1�y = 0 :Cross-di�erentiating we obtain the wave equation for the orretion to the height�2h1��2 � 2 �2h1�y2 = 0with 2 = 2�1�2 and boundary onditionsh1(1; �) = os �; �h1(0; �)�y = 0 :Detailed analysis of this equation, and realling our physial salings suggests that a reasonable ow inthe estuary generated by the tidal motion is of the formv = uv0 = v1 + v0 os(!t); l = l0h = l0 :The spatial variation has been negleted as it varies over a sale muh larger than we are onsidering.Although the height truly does vary in time, it does so slowly and relatively little and is thus not themost important e�et.
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Figure 4.3: Temperature variation in the idealized estuary.4.4 Temperature Variation on an EstuaryIn our model of an estuary we will make all the same assumptions as above for the geometry and physialproperties of the estuary and power plant. From our analysis of the algebrai ase and of the previousmodelling of the estuary, we also assume that v = v1 + v0 os(!t) in the river and that the height of theriver is onstant. We will take the mean veloity to be very small, that is v1v0 = Æ � 1. Writing downthe dimensionless energy balane with heat loss as we had done earlier, we have���� + u(�)���y = �� ;where u = os(�) + Æ for � y� < y < 0u = os(�) + �2Æ for 0 < y < y� ;with onservation aross the outlet by the equationÆ �(�2 � 1) + ��2�(y��; �) � �(y�+; �)� os ��+ �1 �1 + �(0; �) + ��(y��; �) � �(y�+; �)� os �� = 0 :Although in the no loss ase we have a simple-looking advetion equation, we are onfounded from�nding an analytial solution by the ompliated veloity term and the nonloal jump ondition arossthe outlet. Instead we onsider a numerial solution.To solve the problem numerially we have assumed that the soure and outlet are at the same loation.This is reasonable due to the sale - the separation is usually less than 1 km but we are interested in asale of hundreds of kilometres. For these omputations we used an expliit up-winding �rst-order �nitedi�erene method.This lets us answer the questions posed by our mythial engineer, what is the temperature distributionin spae and how hot does the water near the station get? As one would expet, we get an osillatorysolution slowly drifting down river and deaying slowly when heat loss is onsidered. The two importantparameters in this problem are the heat loss oeÆient h and the mean river veloity v0.



30 CHAPTER 4. TEMPERATURE EFFECTS OF A POWER STATION4.5 ConlusionsA model of the temperature distribution in an idealized 1-D river has been onstruted. As a �rst study,mass, fore and energy onservation arguments were used to obtain the steady state solution for onstantriver veloity. This model was then re�ned to inlude heat loss suh that an estimate for the length saleof temperature deay downstream of the power station ould be obtained. The problem of a tidal estuary(with heat loss) was addressed, and the resulting nonlinear advetion equation was solved numerially.As one would expet, when the mean ow veloity is small the temperature distribution is loalised andthe peak temperature is high; when it is large the temperature is spatially more spread out, and the peaktemperature is lower. The numerial model provides a method to alulate the important quantitativeinformation required to assess the environmental impat of the power station on the estuary.



Chapter 5Optimal Poliies for Disk ControllersPartiipants: Rahel Kuske (Mentor), Niola Costanzino, Brue Rout, Calin Anton, Cristina Popesu,Leonid Moofan, Amir Sepasi, Nathan Krislok, Zhihui Xue.PROBLEM STATEMENT: The problem we onsider is one of trying to maximize the amount ofinformation proessed by a system onsisting of a CPU and a RAID disk ontroller. We envision asituation where the information to be proessed onsists of write data, read data, read requests and asmall amount of other misellaneous jobs. We make the distintion between read data and read requestsbeause a request to retrieve data from, say, the hard drive or the ahe is very small in size, while theatual data that is retrieved and read may be very large. On the other hand, the data to be writtenis aompanied with a write request that is very small in size ompared to the average size of datathat is to be written. For this reason, we don't distinguish between a stream that onsists of writedata aompanied by a write request, and a stream onsisting of just write data. The CPU proessesthese requests by sending them (and any assoiated data) to the disk ontroller. Sine we assume thatour CPU an only proess serially, the job of the disk ontroller is to manage aess to the hard disks,suh that the total time the CPU spends proessing information is redued from the time it would takewithout the ontroller.Our job is to �rst propose a simple model for the system in question and identify the important andneessary parameters. One this is done, we onsider a few ases where we try to optimize the proessingability of the system by tuning the parameters of the disk ontroller.
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32 CHAPTER 5. OPTIMAL POLICIES FOR DISK CONTROLLERS5.1 Methodology of SolutionBelow is a shemati of the system we onsider in this report.
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rWe desribe this system using a uid model, whih assumes that the data is owing in and out ata fairly regular rate. This approah has been very suessful in situations where there is more-or-lessuniform usage, or that the time sale in whih we monitor the ow of information is large omparedto the time interval between the disrete bathes being sent to the CPU. Using this approah, we anmodel the data and requests as a uid-like steam quantities, and desribe everything in terms of rateswith units of bloks per unit time. The parameters of the model are de�ned as follows:�w : rate of inoming write data�r : rate of inoming read requestsXw : amount of write data yet to be proessed by CPUXr : amount of read requests yet to be proessed by CPU�w : rate CPU an write data to ahe (Megabytes per seond)�r : rate CPU an proess read requestsfw : fration of time CPU spends writing datafr : fration of time CPU spends writing write requestsYw : amount of write data in the aheYr : amount of read data in the ahed : ratio between average read data size and average read request sizew : rate ontroller proesses writes to HDr : rate ontroller proesses read requestsgw : fration of time ontroller spends writing data to HDgr : fration of time ontroller spends proessing read requestsZw : amount of write data written to HDZr : amount of read data written to ahe�� : rate CPU an proess read dataf� : fration of time CPU spends reading datafo : amount of time ontroller spends dealing with other jobs



CHAPTER 5. OPTIMAL POLICIES FOR DISK CONTROLLERS 33Wr : amount of read data proessed by CPUYmax : maximum data the ahe an holdT : the amount of time so that the system is ompletely proessedConsider a situation as in the previous shemati. For the analytial portion of this report, we willwork in the regime where the ahe never gets full. Using the notations above we arrive at the followingmodel of a CPU- ontroller system:_Xw(t) = �w � �wfw _Xr(t) = �r � �rfr_Yw(t) = �wfw � wgw(t) _Yr(t) = �rfr � rgr(t) d_Zw(t) = wgw(t) _Zr(t) = rgw � f���_Wr(t) = ��f� (5.1)where we set fw = � ~fw if Yr + Yw + Zr < Ymax0 otherwise ,and f� = � ~f� if Zr > 00 otherwise .This form for fw ensures us that the ahe is never full, and likewise the hoie for f� ensures us thatwe only spend time reading from the ahe if there is data in the ahe to be read. Clearly, we need toimpose some onditions on the state variables in order that we an pik out optimal gw and gr. For theanalytial portion of this report, we will onsider the ase where we never �ll up the ahe. Under thisassumption we have the onstraintsYr > 0; Yw > 0; Zr > 0; Yr + Yw + Zr < Ymaxfr + fw + fo + f� = 1; gr + gw = 1: (5.2)We pik out parameters gr and gw suh that the average throughput E is maximized, where our ontrolE is given by E := 1T Z T0 [Zw(gw)(t) +Wr(gr)(t)℄dt (5.3)5.2 ResultsWe analysed three ases. The �rst ase is one in whih the disk ontroller has a �xed ratio for thedediation perentages gw and gr. The seond ase is one in whih we assume that the dediationperentages vary with time in a way that is proportional to the amount of data in the ontrollers ahe.Finally, we numerially onsider a stohasti generalization of the �rst ase.5.2.1 CASE 1We �rst onsider maximizing the throughput over all onstant values of gr and gw, that is, we maximizeE over the set A := fgw 2 [0; 1℄g:In this ase, a quik look at (5.3) onvines us that E is maximized by maximizing gw. However, theonstraints limit the size of gw. Analyzing the requirements of (5.2) yields:



34 CHAPTER 5. OPTIMAL POLICIES FOR DISK CONTROLLERSYr > 0 =) 1� gw < �rfrr d 2 (0; 1℄Yw > 0 =) gw < �wfww 2 (0; 1℄Zr > 0 =) gw > ��f�r 2 (0; 1℄:Hene our optimal poliy for this ase is to set the disk ontroller dediation perentages togw = min��wfww ; 1� ��f�r � gr = 1� gw: (5.4)Example 1:As a demonstrative example, we hoose �w = 1; �r = 1=20; �w = 2�r = 20; fw = 1=2; fr = 1=400; d =1=100; w = 4=3; r = 8=3; �tau = 8=3 and f� = 1=4. These parameters satisfy all the inequalities andtell us that the optimum dediation perentages for the disk ontroller for this strategy is gw = 3=4 andgr = 1=4.5.2.2 CASE 2We now turn our attention to the ase where we setgw = �(Yr(�) + Yw(�) + Zr(�))(t); � > 0 (5.5)that is, the perentage of time dediated to proess the write request is diretly proportional to howfull the ahe is. This is a reasonable ansatz beause the fuller the ahe is, the more time we shoulddediate to emptying it out (reall that we are working under the requirement that the ahe never getsoverowed). For this ase we have the nonlinear programmax 1T Z T0 [Zw(gw)(t) +Wr(gr)(t)℄dtover all gw suh that gw := �(Yr + Yw + Zr)satis�es (5.2). In this ase we must still solve the ODE system (5.1), but this time we substitute ouransatz (5.5) for gw. This leads to the system _v = Av + bwhere A = 0� ��w ��w ��w��rd ��rd ��rd��r ��r ��r 1A ;_b = 0� �wfw�rd+ �rfrr � f��� 1A :and



CHAPTER 5. OPTIMAL POLICIES FOR DISK CONTROLLERS 35
v = 0� YwYrZr 1A :Example 2:Equations for the full nonlinear program (i.e. without putting in any values for the parameters) arehorrendously long and unintelligible, so for simpliity we onsider a partiular example for the parame-ter values given in the previous ase. For this the solutions to the ODE's areYr(t;�) = 0:04848t� 1� (0:002877� 0:0002877e�4:00�t)Yw(t;�) = 0:09381� (4:5298�t+ 1:53347(1� e�4:00�t))Zr(t;�) = �0:47343t+ 0:287717� (1� e�4:00�t):With some omputations, we see that the problemmax 1T Z T0 [Zw(gw)(t) +Wr(gr)(t)℄dtsubjet to (5.2) is equivalent to max� f�(Yr(t;�) + Yw(t;�) + Zr(t;�)gunder the same onstraints. The feasible set for � is given throughYr > 0 =) � 2 (�1:360755=T; 0)[ (0:76365� 10�8;1)Yw > 0 =) � 2 RZr > 0 =) � < 0:5365675=T .whih implies that � 2 (�1:360755=T; 0) [ (0:76365 � 10�8; 0:5365675=T ). After solving the nonlin-ear program we �nd that the optimal value of � is� = 0:5365675=T; (5.6)and thus putting this value of � in the formula for gw, we getgw(�t; T ) : = 0:5365675(�0:4249499666�t+ 0:5356811791� 0:5356811791T e�2:144839153�tT+ 0:1748382854(2:430531537�tT + 1:533466752� 1:53346755e�2:144839153�tT )T )=T:Representing the gw as a funtion of t and T we get the pitures from �gure (5.1), where Dt representsthe total time the experiments is run for. As it an be seen, gw tends to stabilize at a value around 0.Therelatively small value of gw an be interpreted as a proof that the disk ontroller is kind of "intelligent".5.2.3 CASE 3Here we onsider a ase where the input data has an assoiated stationary distribution. For the simula-tions, a standard poisson distributed write and read input data stream was randomly generated having
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Figure 5.1: gw as a funtion of t and Tan averages �w and �r respetively. For the parameters, we used the sample values found in Examples1 and 2.The model assumed a disk ontroller bu�er size of 4 Megabytes for our simulations taking time stepsof 3.75 seonds before learing the bu�er. The �rst �gure (5.2) shows the distribution of data beinginput to the CPU and the \output" stream as read requests. The seond �gure (5.3) shows the states ofthe ontroller bu�er. It an be seen that the bu�er is being leared eah time step under our parametersbut is being nearly fully utilized throughout the run. The intermittent stream represents data sent tothe bu�er before it is leared by the ontroller (in the middle of time steps). The data lines aross thebottom of the graph represent amounts of data in the ahe at the end of eah time step.The third �gure (5.4) shows expeted amounts of input and output data. In the model the inputdata is in a bu�er and has to wait for the CPU to send it to the ontroller's ahe. The output streamrepresents the expeted read requests servied in eah time step.It an be seen from this �gure that over 11 hours of simulation the parameters predit the systeman keep up to the demands of reads and writes to the hard drives provided the CPU has aess to aninput bu�er of 180 Megabytes. The expetation of output hits a maximum of 40 Megabytes of readrequests. Here we have assumed the read request size is an average of 1/100 of the atual output datastream.The model makes ertain assumptions. It �rst �lls the ahe with inoming data. It then deideshow muh data to input by heking that it does not overow the ahe. The model also alulates themaximum amount of data that the CPU an write to the ahe as �w; fw;�t. The model puts into theahe whatever is less, the amount to �ll the ahe or the maximum it an write in the time allotted.After the data during that time step has been handled, the CPU then loads the inoming data requestsinto the ahe, again after heking that the ahe doesn't overload and deiding on the least value ofeither how muh data it has to handle as read requests, �lling the bu�er or how muh data the CPU
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Figure 5.2: The distribution of data being input to the CPU and the \output" stream as read requests.an handle, namely �r; fr;�t.After the CPU has loaded the bu�er as muh as it an, the model swithes its attention to theontroller. The ontroller �rst empties data from the ahe and writes it to the hard drive. The modeldeides on the least value between the amount of write data in the ahe and the maximum amount ofdata it an possible handle in the time step, namely w; gw;�t. One the ontroller has tried to learthe ahe as muh as it an it then sends data to the CPU. Here the model has the ontroller deidebetween how muh it has in read requests in the ahe to proess and the maximum amount of readrequests it an handle. The model then also takes into aount the maximum amount of data that theCPU an output and deides between all three to determine the amount of data to put in the outputstream.The CPU's input bu�er is redued by the amount of data sent to the ahe and the amount of dataexpeted is lowered by the amount of data in the output stream.
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Figure 5.3: The states of the ontroller bu�er.
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Figure 5.4: The expeted amounts of input and output data.
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