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FOREWORD BY THE PIMS DIRECTORThe PIMS Graduate Industrial Math Modeling Camp (GIMMC) is held every year in one ofthe PIMS universities as part of the annual PIMS Industrial Forum. It is part of PIMS ommitment toproviding training for young mathematial sientists who are either pursing areers in aademia or inindustry.The goal of the GIMMC is to provide experiene in the use of mathematial modelling as a problemsolving tool for graduate students in mathematis, applied mathematis, statistis and omputer siene.In addition to this it helps prepare them for the Industrial Problem Solving Workshop whih isthe other omponent of the PIMS Industrial Forum.At the workshop students work together in teams, under the supervision of invited mentors. Eah men-tor poses a problem arising from an industrial or engineering appliation and guides his or her team ofgraduate students through a modelling phase to a resolution.The 1999 GIMMC, whih was the seond, was held at University of Alberta, May 24{28, 1999. Twenty-seven students ame from eight universities aross Canada to work with six mentors from industry.These mentors ame from Alberta Energy Utilities Board, Teleommuniations Researh Laboratories,Synrude, Alberta Researh Counil, Enbridge Pipelines Ltd and Lokheed Martin Canada.It my pleasure to announe that the workshop was an unquali�ed suess for all the six projet teams.I want to extend my thanks to the organisers (Abel Cadenillasi, Douglas Kelker, Mike Kouritzin, HenryLeung, Bryant Moodie, Brue Sutherland, Yanhong Wu), mentors (Stefan Bahu, Wayne Grover, MikeLipsett, John Oliver, Don Sott, Pierre Valin) and students involved in this workshop. Future ampsare something I truly look forward to.Dr. Nassif Ghoussoub, DiretorPai� Institute for the Mathematial Sienes
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PREFACEThis year's GIMMC adopted a novel approah to introduing graduate students to the mathematialtehniques that arise in industrial R&D. Rather than tutoring students through solutions to arti�iallyposed problems or to problems that have already been solved, this amp asked students to takle a set ofsix, unsolved, modelling problems brought to them by industrial mentors. These problems arose diretlyfrom the R&D ativities of the mentor's organisation. Based on team-projet approah, eah group ofstudents, a faulty partner and an industrial mentor, worked together to solve one of the six problems.Judging from the written feedbak, the Seond PIMS Graduate Industrial Math Modelling Campwas an unquali�ed suess for all the six projet teams. Everyone praised the amp's impeable organ-isation. The Industrial Mentors were unanimous in their praise of the amp's onept and exeution.The industrial mentor from Lokheed Martin Canada wrote that the results of the amp exeeded hisexpetations. The industrial mentor from Teleommuniations Researh Laboratories, one of Canada'sleading industrial teleommuniations researh organisations, was unequivoal in his assessment: \Ithink it's all a terri� idea. I overwhelmingly salute the whole initiative". The graduate students got thesatisfation of making meaningful progress on mathematial questions of timely interest to industry. Asone student from Montreal put it: \I really enjoyed working on a onrete problem". Mathematiianstend to work alone. Doing researh as part of team was a new and rewarding experiene for the students.For one of the students in Projet 4, \It was amazing how well we worked together . . . we got a lot outof it and I know we are all happy with our report". Another student in Projet 1 appreiated the expe-riene of \learning how to ontribute ideas with other students and write a report together". Throughthe interation with the graduate students and faulty partners, the industrial mentors developed newperspetives on their modelling problems. But most important, the amp exposed all the partiipantsto the rewarding possibilities that ollaboration between mathematiians and industry an bring.As with any undertaking, suess starts with the quality of the people involved. GIMMC wasfortunate to have had enlisted senior members from some of Canada's most prominent organisations toat as \industrial mentors".The faulty partners were ritial to the suess of this amp. They provided the needed bridgebetween the mentor's industrial expertise and the graduate students' mathematial skills. PIMS wantsto give speial thanks to all the faulty partners for their seless partiipation.Finally, the amp's suess was assured by the partiipation of bright and motivated graduate stu-dents. Twenty-seven students were seleted for this year's amp. They were a diverse group whosebakgrounds ranged from pure and applied mathematis to statistis. They were also geographiallyheterogeneous group: four from Quebe, one from Ontario, one from Saskathewan, eight from Alberta,and thirteen from British Columbia. PIMS is partiularly pleased that a amp on Industrial Mathematisattrated as many women as it did men.
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Chapter 1Regional - Sale Variation of RokProperties in the Viking Formationin AlbertaPartiipants: Stefan Bahu (Mentor), Andrea Amariel, Brenda Hawkins, Emmanuel Ngimbi Ngembo,Shelly Pinder, Grae So.PROBLEM STATEMENT: The Cretaeous sedimentary suession in the Alberta basin is omprisedof sandstone and shale formations. The main sandstone units are, in desending order from the surfae:Paskapoo, Sollard, Belly River, Milk River, Dunvegan, Cardium, Viking and Mannville. Oil and gasexploration and prodution has produed a wealth of information regarding porosity and permeabilityin these units. The data are �led in eletroni form with the Alberta Energy and Utilities Board andare publily available. So far no analysis of rok properties in these units has been performed at thebasin sale. The main issue is to identify if there are regional-sale trends in porosity and permeabilityvariations that would allow predition of these rok properties for areas and strata laking data. TheViking Formation has been seleted for testing for trends in rok properties and for the development ofmethodology to be applied in the analysis of the other sandstone units in the Alberta basin.More spei�ally, the objetive is to statistially analyze permeability and porosity distributions inthe Viking Formation in order to identify at the regional sale any of the following:� if there is any orrelation of rok properties with depth;� if there is any orrelation between the two rok properties;� if there is a partiular spatial distribution of rok properties.
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2 CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA1.1 IntrodutionExept for the northeast orner of Alberta where Preambrian rystalline roks are exposed at thesurfae, Alberta's subsurfae is omprised of a wedge of sedimentary roks that thikens from a zero-edge in the northeast to more than 6000 m in the southwest at the Roky Mountain foothills. One ofthe main harateristis of sedimentary roks is porosity, �, whih is de�ned as the ratio of \empty"spae in a rok volume to the total rok volume. This empty spae is atually �lled, or saturated, withuids, mostly water. In hydroarbon reservoirs, abundantly found in Alberta, the pore spae is �lledwith oil or gas. While essential for the existene of uids in the sedimentary roks, porosity is notindiative of the ability of uids to ow through the pore spae. Permeability, usually denoted by k, isthe rok property that indiates the ability of uids to ow through roks when a hydrauli gradient isapplied as a result of either natural proesses, suh as elevation di�erenes, or of human ativity, suhas pumping or injetion of uids. Permeability is an essential rok property for pumping oil and gas outof hydroarbon reservoirs, and for injeting residual water, liquid wastes and arbon dioxide into deepsaline aquifers and depleted reservoirs. Both rok properties are geo-spatially distributed, exhibiting adependene on loation and depth.As siliilasti sediments (sand, mud, lay) are deposited in a sedimentary basin, they are mehan-ially ompated by the weight of the overburden, suh that their porosity dereases with depth fromabout 45% at deposition to a few % at great depths. The following empirial relation, Athy's Law, wasobservationally found to be valid in many ases:� = �0e�bz; (1.1)where z is depth, �0 is the sediment porosity at deposition (� 45%), and b is an empirial onstant.Permeability is linked to porosity, but not in a simple diret way. Sediments with high porosity suhas lays and shales, have extremely low permeability, making them aquitards (rok formations unable totransmit water on a human time sale). Other roks suh as sandstones may have a smaller porosity, buta signi�antly higher permeability, making them aquifers (if they ontain water) or reservoirs (if theyontain oil or gas) from whih uid an be extrated. For the same lithologial unit, e.g. sandstones,permeability may be highly variable, by several orders of magnitude, from 10�15 to 10�10m2. The oilindustry uses for permeability another unit, the Dary (1 D = 10�12m2). Permeability displays a muhweaker orrelation with depth, but in some ases an empirial relation with porosity was found, of theform [7℄: log(k) = A� +B; (1.2)where k is expressed in Daries, and the oeÆients A and B have values around 15 and -3, respetively.The values of porosity and permeability must be determined through experiments and �eld mea-surements. Porosity is measured in the laboratory on plug samples, several m long, extrated fromore. Unlike variables like temperature and pressure, permeability annot be diretly measured, and ithas to be bak-alulated from the measurement of other variables, suh as pressure and ow rate, andappliation of Dary's Law for ow in porous media. Permeability an be determined in the laboratoryon the same plug samples as porosity. Also, it an be determined in the �eld in either pump or drillstemtests. In the ase of �eld tests, the volume of rok sampled is several orders of magnitude greater than inthe ase of laboratory determinations on ore plugs. Porosity and permeability values measured at theplug sale (10�2 m) an be saled up to the well, or drillstem test, sale (100 � 101 m) using e�etive-averaging proedures [3, 5℄. Beause of sampling bias, measurement sale and rok heterogeneity, thepermeability values measured by the two methods are di�erent.Porosity and permeability are known only at spei� loations. Natural porous formations in sed-imentary basins are heterogeneous, i.e. they display porosity and permeability variability at varioussales. This irregular and omplex variability de�es a preise quantitative desription beause of: 1) in-suÆieny of information, and 2) lak of interest in knowing the struture and ow �eld in every minutedetail, whih, even if known, annot be handled. Predition of porosity and permeability is importantfor the exploration and prodution of oil and gas, and for the seletion of sites for injetion of residualwater and liquid wastes.



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 3X Y THETA DIST GROUND CORDEPTH ELEV SCALEPER POROS CORLENX 1.000 -.507 -.772 .768 -.469 -.690 .727 .147 .636 -.047Y 1.000 .935 .136 -.294 -.068 .000 .190 .070 -.082THETA 1.000 -.200 -.045 .217 -.284 .069 -.197 -.035DIST 1.000 -.802 -.903 .897 .312 .828 -.075GROUND 1.000 .893 -.826 -.288 -.698 .064CORDEPTH 1.000 -.991 -.278 -.805 .029ELEV 1.000 .263 .805 -.018SCALEPER 1.000 .382 -.026POROS 1.000 -.026CORLEN 1.000Table 1.1: Pearson Correlations among variables from ore analysis data.1.2 MethodAlberta Geologial Survey provided three data �les, ore.dat, dst.dat, and dstore.dat, whih were readinto the statistial appliation SPSS 8.0. Inonsistenies in the data were resolved, and then multiplelinear regression strategies and statistial inferening tehniques were used to seek orrelations amongthe variables, to attempt to verify relations 1.1 and 1.2, to produe useful models, and to address thespei� questions posed by Alberta Geologial Survey.The geographial loation of a well site is spei�ed in the data as X and Y oordinates (in entimeters,transformed from the latititude - longitude system of oordinates to a UTM map at sale 1:2,500,000)from the origin at 49ÆN and 126ÆW. This suggested the introdution of two other variables, the polaroordinates of the well loation, alulated as the distane from the origin, labelled DIST, and the anglefrom the polar axis, labelled THETA.1.3 Porosity and Permeability Measured in CoreThe �rst �le, ore.dat, has 4079 reords of plug sample data, with measurements of permeability andporosity already saled up from the plug to the well sale. We removed 133 reords whih were foundto be from other formations, leaving 3946 valid reords. Another 196 reords for whih the permeabilitymeasurement was zero, were removed for any work with that variable, so that those results are based on3750 reords. The variables used for investigation are:X and Y geographial oordinates in mDIST distane = pX2 +Y2THETA tan�1(Y=X)GROUND ground elevation (m)CORDEPTH depth (m) of the ored and analyzed intervalELEV elevation (m) above sea level of the ored and analyzed intervalSCALEPER e�etive well-sale permeability in millidaries (1md = 10�15 m2 ),saled up from plug-sale valuesGEOAVE geometri average of plug-sale permeability values, same unitsPOROS e�etive well-sale porosity, saled up from plug-sale valuesCORLEN length (m) of the ored and tested intervalPairwise orrelations were produed and examined for links between variables (Table 1.1). Several ofthe signi�ant spatial orrelations are not surprising: GROUND = ELEV + CORDEPTH, so of oursethey are related. We also expet DIST to be orrelated with ELEV, CORDEPTH, and GROUNDbeause the elevation ontour lines on the maps form, approximately, radial ars to the oordinateorigin. A satterplot of ELEV vs DIST in Figure 1.1 depits the strength of the relationship betweenthese two variables. We also note that POROS is strongly orrelated with the spatial variables, whereasneither of the permeability variables, SCALEPER nor GEOAVE, are signi�antly related to the spatialvariables. There is only a weak orrelation of POROS with the permeability variables.The large negative orrelation of DIST with GROUND is due to the topography dereasing northest-



4 CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA

Figure 1.1: Elevation of Tested Interval vs Distane from Origin.ward (a geographi-erosional feature). The large negative orrelation between DIST and ELEV is dueto the elevation of the formation inreasing northeastward (a depositional feature). Sine porosity de-reases with depth, the large orrelations of POROS with DIST and CORDEPTH is losely related tothe relations of DIST with GROUND and DIST with ELEV.First, we looked at permeability as a funtion of porosity. Using the subset of 3750 reords, wede�ned a new variable, LOGk, as the logarithm base 10 of (SCALEPER � 1000) and tried to relate itto POROS, as in Relation 1.2 (This relation was suggested by Rubey and Hubbert [7℄):LOGk = �3:398+ 11:126 � POROS; with R2 = 0.450.Comparing this equation to Relation 1.2, we observe the onstant term, -3.398, is very lose to the valueof -3 reported by Bethke and Marshak [2℄, and the oeÆient of POROS, 11.126, is not far o� theirobserved value of 15.The standardized residuals for this model are not evenly distributed, as seen in Figure 1.2(a). Aurve in the satterplot of LOGk vs POROS suggested the inlusion of POROS2 in the model. Withthis improvement we obtain a slightly better R2 value and the satterplot of the standardized residualsversus the standardized predited values displays a more even distribution (Figure 1.2(b)).LOGk = �3:995+ 20:559 � POROS� 29:461 � POROS2; with R2 = 0.474.Again using the subset of 3750 reords, we onsidered permeability as a funtion of depth or elevation.Using the variable LOGk de�ned earlier, we experimented with independent variables ELEV, GROUND,and CORDEPTH. The results were similar for all ases, with a near normal distribution of residuals(Figures 1.3(a) and 1.3(b)), but even the best model has a very low R2 value.LOGk = �0:597+ 0:00122 � ELEV� 0:00068 �GROUND; with R2 = 0.322.Next, we sought a relationship between POROSITY and the depth of the formation, using the full setof 3946 reords. Beginning with Athy's Law, Relation 1.1, we took the natural logarithm of both sides,
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(a) (b)Figure 1.2: Standardized Residual Plots

(a) (b)Figure 1.3: Standardized Residual Plots
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(a) (b)Figure 1.4: Standardized Residual Plotsgiving ln� = ln�0 � bz: To �nd a regression model of this form, we de�ned a new variable, LNPOROS,to be the natural logarithm of POROS, and using CORDEPTH as the variable z, we produed:LNPOROS = �1:013� 0:00078 �CORDEPTH; with R2 = 0.678.The onstant term of -1.013 implies that �0 is approximately 36%, less than the 45% as foundelsewhere. Similarly, we allowed ELEV to be the independent variable z, again looking for a model ofthe form ln� = ln�0 � bz:LNPOROS = �1:582+ 0:000982 � ELEV; with R2 = 0.678.Here, the onstant term, -1.582, implies that �0 is approximately 21%, signi�antly less than the45% as found elsewhere. The residual plots are very similar for both models, skewed to the low end ofvalues, and revealing a departure from normality (Figures 1.4(a), 1.4(b)). Based on the knowledge ofthe proosity of sands at deposition, the �rst model is better than the seond one.Exploring the notion that the onstant b in Athy's Law might be a funtion of geographial loation,we reated a number of variables that are produts of a funtion of X and Y, with CORDEPTH orELEV. Correlations between LNPOROS and these produt variables are shown in Table 1.3. Thehighest orrelation is between LNPOROS and ELEV�DIST with a value of 0.827, but this is only .004greater than the orrelation between LNPOROS and CORDEPTH. In fat, very little improvement inthe R2 value of a regression model an be ahieved using any of the produt variables, so, as mentionedabove, the model ontaining the single variable CORDEPTH is the preferred model.1.4 Permeability Measured in Drillstem TestsThe �le dst.dat ontaining 10,516 reords of drillstem test data was found to be too large to work withe�etively. Using the variable for the quality of the drillstem test, the reords of highest quality, with avalue of A, were extrated. This produed a muh smaller �le of 2806 reords to work with. The typeof uid reovered during the test, identi�ed only as G for gas and L for liquid (water), was reoded as aboolean variable so that it ould be inluded in any models as a qualitative variable. The variables usedin the statistial investigations are:



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 7LNPOROS LNPOROSELEV .824 CORDEPTH -.823ELEV�X .819 CORDEPTH�X -.781ELEV�Y .792 CORDEPTH�Y -.751ELEV�X�Y .817 CORDEPTH�X�Y -.780ELEV�(X+Y) .827 CORDEPTH�(X+Y) -.822ELEV�(X-Y) .641 CORDEPTH�(X-Y) -.362ELEV�DIST .827 CORDEPTH�DIST -.821ELEV�DIST2 .827 CORDEPTH�DIST2 -.811ELEV�X�Y .757 CORDEPTH�X�Y -.583ELEV�Y�X .732 CORDEPTH�Y�X -.681ELEV�DIST .817 CORDEPTH�DIST -.822ELEV�DIST�THETA .779 CORDEPTH�DIST�THETA -.730ELEV�DIST�THETA .777 CORDEPTH�DIST�THETA -.582ELEV�X�DIST .816 CORDEPTH�X�DIST -.793ELEV�Y�DIST .787 CORDEPTH�Y�DIST -.761ELEV�THETA .774 CORDEPTH�THETA -.742Table 1.2: Correlation between LNPOROS and produt variables from ore.datX Y DIST GROUND DSTDEPTH ELEV PERM GAS DSTLENX 1.000 -.409 .646 -.296 -.533 .566 .052 .145 .006Y 1.000 .404 -.551 -.290 .143 .081 .141 .097DIST 1.000 -.743 -.813 .740 .115 .215 .049GROUND 1.000 .784 -.593 -.129 -.204 -.076DSTDEPTH 1.000 -.965 -.095 -.093 -.012ELEV 1.000 .069 .034 -.017PERM 1.000 .488 -.177GAS 1.000 .096DSTLEN 1.000Table 1.3: Pearson Correlations among variables from drillstem test data.X and Y geographial oordinates (still in entimeters)DIST distane = pX2 + Y 2GROUND ground elevation (m)DSTDEPTH depth (m) of the drillstem tested intervalELEV elevation (m) above sea level of the tested intervalPERM logarithm base 10 of permeability (m2)GAS boolean values: 1 for gas, 0 for liquidDSTLEN length (m) of the tested intervalAs with the previous �le, bivariate orrelations were produed and examined. In Table 1.3 weagain see the expeted strength of orrelation between the GROUND, CORDEPTH, ELEV, and DISTvariables. We note that PERM is not strongly orrelated to any of the spatial variables, but that it doesshow a orrelation of 0.488 with GAS.To further explore the signi�ane of the type of uid present in the sandstone, we divided the dataset into two groups, by uid type. The result was a set of 733 reords for whih GAS = 0, or the uidis a liquid, and another set of 2,073 reords for whih GAS = 1. Using a t-test to ompare the meanPERM of the two samples, we found the di�erene between the sample means to be 1.70, with verystrong statistial evidene that the mean PERM is di�erent for GAS = 0 and GAS = 1 (the t teststatisti is 36.69).Multiple linear regression was attempted using both stepwise and bakward elimination approahesto identify the important preditors of permeability. In early attempts the residuals always displayedinreasing variability. To ounter this result, we attempted several transformations of the permeabilityvariable, the most fruitful of whih was PERMDEP, de�ned as PERM divided by the square root of DST-DEPTH. We also experimented with several interative terms, but found only one useful: GAS�ELEV,
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(a) (b)Figure 1.5: Standardized Residual Plotswhih is equal to ELEV when GAS=1, otherwise 0. Using PERMDEP as the dependent variable, wefound that both X and Y were entered and retained as independent variables in the models, but DISTwas always exluded or removed. We present here the three best models.PERMDEP = �0:368� 0:0024 �Y+ :082 �GAS� 0:0021 �DSTDEPTH�0:00068 �DSTLEN� 0:00049 �DIST;with R2 = .698. This model was improved somewhat by the addition of the interative term GAS�ELEV:PERMDEP = �0:393� 0:00233 �Y+ 0:0826 �GAS + 0:00025 �DSTDEPTH� 0:00068 �DSTLEN�:00518 �DIST + :00009 �GAS� ELEVwith R2 = .706. Inlusion of the variable GROUND improved the R2 value again:PERMDEP = �0:284� 0:000293 �Y+ 0:00028 �GAS + 0:081 �DSTDEPTH + 0:00071 �DSTLEN�0:00567 �DIST;� :0001 �GAS� ELEVwith R2 = .710. Unfortunately, eah of these three models produes a large number of negative standard-ized residuals below -3, that only inreases with eah additional independent variable. Residual plots forall three models appear very similar so only those for the �rst model are shown here, as Figures 1.5(a)and 1.5(b). These plots display the skewed distribution of the residuals.1.5 Permeability Measured in Drillstem Tests and CoreThe third �le, dstore.dat ontains 441 reords, representing the 441 loations for whih we have boththe ore analysis and drillstem test data, or, in other words, it is the intersetion of the other two �les,by loation. Eah reord then supplies measurements of all the variables de�ned for dst.dat as well asthose for ore.dat. Some of the variables, suh as ground elevation, are redundant in this �le, and weredisregarded.



CHAPTER 1. REGIONAL - SCALE VARIATION OF ROCK PROPERTIES IN ALBERTA 9DSTPERM SCALEPERX -.043 .103Y .328 .243DIST .221 .318GROUND -.286 -.252DSTDEPTH -.202 -.234ELEV .181 .259GAS .014 -.008POROS .291 .043DSTPERM 1.000 .356SCALEPER .356 1.000GEOAVE .285 .952Table 1.4: Correlations from dstore.datDSTPERM SCALEPERMMinimum 0.3 0.1Maximum 4172.5 6240Interquartile Range 30 124.9Median 58.5 4.6Mean 180.6 57.4Standard Deviation 257.2 468.4Table 1.5: Desriptive StatistisAlberta Geologial Survey onstruted this �le to test the two measurements of permeability foronsisteny. A ore analysis, saled up from plug-sale values, and a drillstem test were onverted topermeability in millidaries. We onsidered the following set of variables in our analysis:X and Y geographial oordinatesDIST distane = pX2 + Y 2GROUND ground elevation (m)DSTDEPTH depth (m) of the drillstem tested intervalELEV elevation (m) above sea level of the tested intervalGAS boolean values: 1 for gas, 0 for liquidDSTLEN length (m) of the tested drillstem intervalCORLEN length (m) of the ored and tested intervalPOROS e�etive well-sale porosity, saled up from plug-sale values, from ore analysisDSTPERM logarithm of permeability (m2), from drillstem testSCALEPER e�etive well-sale permeability (md), saled up from plug-sale values,from ore analysis, (1md = 10�15 m2 )We were looking for a relationship between DSTPERM and SCALEPER and similar trends betweenthem and the other variables. Between DSTPERM and SCALEPER, there exists a orrelation of only.173, indiating little onsisteny. As we did with the �le dst.dat, we deided to selet from dstore.datonly those reords for whih the drillstem test quality is of the highest level, A. The following resultsare based on the 109 reords that remained after �ltering.Bivariate orrelations are shown in Table 1.4. There are some deviations in the trends between thepermeability variables and the other variables. For the variables X and GAS, the orrelations with DST-PERM and SCALEPER even have di�erent signs. The orrelation of DSTPERM with SCALEPERMis .356, better than that for the whole data set, but still weak. The desriptive statistis in Table 1.4show signi�ant di�erenes between the two variables, whih are supposed to be measuring the sameproperty. The satterplot of values in Figure 1.6 illustrates this disparity.These results indiate that there is not a onsistent relation between permeability measurementsin the drillstem test and the ore analysis. Inferene based on a ombination of the two data sets is
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Figure 1.6: Satterplot of the two methods of measuring permeability.inappropriate and dst.dat and ore.dat should be analysed separately.1.6 ConlusionThe two measurements of permeability, the drillstem test at the well sale and the saled up measure-ment from the ore analysis, are found to be inonsistent. For this reason, the two �les were analysedseparately, with no mixing of the data sets.The regression models developed for permeability measured in drillstem tests were less than satis-fatory beause of the non-normal distribution of the residuals. The presene of gas in the sandstoneappears to be a more signi�ant fator of permeability than geographi loation or depth.Permeability measured in ore and saled up is modelled by Relation 1.2, although with an R2 valueof only 0.442. These data do not on�rm the oeÆients previously observed for Relation 1.2.Regression reveals a muh stronger relationship between porosity and elevation above sea level or,almost equivalently, depth below ground level, as modeled by Relation 1.1. Approximately 70% of theinrease in porosity is explained by an inrease in elevation or a derease in depth. These data, howeverdo not support or ontradit the value of 45% as the sediment porosity at deposition.Our investigations fail to indiate spei� loations for CO2 sequestration.Permeability measured in the ore (10�2 metres sale) is not representative for formation perme-ability, as measured in drillstem tests (100 � 101 metres), therefore not for the formation (102 � 104metres).



Chapter 2Performane Modelling of a NovelSheme for TeleommuniationsNetwork SynhronizationPartiipants: Wayne Grover (Mentor), Tamar Daki, Sott MaLahlan, Todd Oliynyk, Paul Wiebe.PROBLEM STATEMENT:
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Chapter 3Oilsand DynamisPartiipants: Mike Lipsett (Mentor), Vinent Lemaire, Devom MCrea, Luz Palaios, Peilin Shi.PROBLEM STATEMENT: In surfae mining operations, large fae shovels are used to break outore and load truks whih transport the material to a mill for proessing. In the oilsands industry, theproessing results in syntheti rude oil. At Synrude, over 150 million tons of oilsand is exavated eahyear to produe 80 million barrels of oil (about 12% of Canada's energy supply). EÆient exavationoperations are thus very important for this eonomy of sale. Several fators are related to eÆientexavation, inluding shovel/buket design, shovel-soil interations, equipment design, and automatedoperations.Surprisingly, this is not a solved problem. Despite millions of earthmoving mahines that arve theearth, we don't really understand the physis of moving dirt. We here examine the spei� problem ofbuket-soil interation.
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CHAPTER 3. OILSAND DYNAMICS 133.1 IntrodutionIn the oilsands, the performane of a shovel is often muh poorer than its equivalent performane diggingblasted hard rok or oal. Oilsand is a mixture of sand, lay, water, and bitumen. It has the onsistenyof old asphalt. It is extremely abrasive. In the summer it oozes tar, and stiks to anything it touhes.In the winter, it freezes solid and beomes hard to break. It has very high frition against steel.The diÆulty in modeling tool interation is not limited to the oilsands industry. There exist no goodmodels for how bulk solids break and ow into a buket or hopper. E�orts to date have onentratedon empirial formulae for apturing the important physial parameters of a mahine in simple (and thusinexat) terms. Empirial formulae apply to spei� mahine types, and neither sale well for new largermahines of the same type nor translate well to other mahine types.3.2 Statement of ProblemWe examine oilsand exavation using a front end buket to extrat material from a sloped wall of oilsand.In pratie, it has been observed that the timing and motion of the sooping ation greatly a�ets theamount of material reovered in a single soop. We wish to model this extration proess and examinehow various parameters a�et the volume of material reovered. Parameters of interest inlude the soilproperties, the angle of the wall of oilsand relative to vertial, the angle of buket insertion, and thefores applied to the buket.3.3 Method of ApproahTo model the bank of oilsand, we make use of a speialized program alled FLAC (Fast LagrangianAnalysis of Continua). FLAC is a two dimensional expliit �nite di�erene program for engineeringmehanis omputation. It simulates the behaviour of strutures built of soil, rok or other materials thatmay undergo plasti ow when their yield limits are reahed. We began by onstruting a quadrilateralto model the oilsand, whih looks like the graph in Figure 3.1.Model geometry was spei�ed, as well as soil properties. The following values were used:parameter desription typial valuelengthb depth of insertion of shovel 1mtheta angle of sand fae to vertial 18ophi angle to normal of inserted shovel 10ob bulk modulus 200 MPas shear modulus 200 MPa ohesion 1MPat tension 5.67 MPaf frition 10odi dilation 10od density 2000 kg/m3We assumed that the shovel was already inserted into the sand.Fore was applied to the inserted part of the buket with a linear variation to simulate the soopingmotion, as shown in Figure 3.2.The graphs in Figure 3.3 are obtained after 100 (upper left), 200 (upper right), 500 (lower left) and1000 (lower right) steps:The graph of the hange of the vertial displaement after 500 time steps is shown in Figure 3.4.A di�erene an be seen when hanging theta to 15o. The graph of the hange of the vertialdisplaement after 500 time steps is shown in Figure 3.5.
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Figure 3.1: Initial Grid

Figure 3.2: Initial Grid with applied fores
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Figure 3.3: Fores after 100, 200, 500 and 1000 steps



16 CHAPTER 3. OILSAND DYNAMICS

Figure 3.4: Fores after 1000 steps

Figure 3.5: Fores after 1000 steps



CHAPTER 3. OILSAND DYNAMICS 173.4 SummaryA basi struture for modeling oilsand exavation was implemented using a speialized engineeringmehanis software pakage. We were able to perform some simple investigations on parameter hangesto our model. Some methods were disussed in our group whih would allow us to determine the volumeof oilsands reovered in a single soop.In the future, there are ommands available in the FLAC program to determine the individual elementdisplaements and area. A ount ould be performed over the whole grid to determine the total numberof elements whih were fratured during the sooping proess. There are several metris to determinewhether an individual element is fratured. One way is to measure the hange in area of the element,and if this hange is greater than some �xed value, it will be assumed that there was a frature withinthat element.Many interesting parameters an now be investigated using our model together with some smallvariations. Various soil properties an be hanged to model hanges in temperature.3.5 Sample File Used to Run Simulations;=======================================================================;--- Oilsands: May 29/99 ---;--- program to alulate shift in sand due to inserted model shovel ---;=======================================================================;--- set domain parameters ---newdef length height theta ybuket phi thikness lengthblength=7height=7theta=18ybuket=4phi=10thikness=0.05lengthb=1enddef devdev=height*tan(degrad*theta)enddef xbuketxbuket=ybuket*tan(degrad*theta)enddef alphaalpha=theta+phienddef ybukettybukett=ybuket-(length-xbuket)*tan(degrad*alpha)enddef gammagamma=90-theta-phienddef xbuketthikxbuketthik=xbuket+(thikness*sin(degrad*theta))/os(degrad*phi)enddef ybuketthikybuketthik=ybuket+(thikness*os(degrad*theta))/os(degrad*phi)end



18 CHAPTER 3. OILSAND DYNAMICSdef ybuketttybukettt=ybukett+thikness/sin(degrad*gamma)enddef xlxl=xbuket+lengthb*sin(degrad*gamma)enddef ylyl=ybuket-lengthb*os(degrad*gamma)enddef xllxll=xl+(thikness*sin(degrad*theta))/os(degrad*phi)enddef yllyll=yl+(thikness*os(degrad*theta))/os(degrad*phi)enddef xbottomxbottom=xl-yl/tan(degrad*(90-theta))enddef xtopxtop=xbottom+height/tan(degrad*(90-theta))end;--- look at alulated parameters ---print length height theta ybuket phi thikness lengthbprint dev xbuket alpha ybukett gamma xbuketthik ybuketthik ybuketttprint xl yl xll yll xbottom xtopgrid 40 40;--- set up Mohr-Coulomb model and its parameters ---model mohrprop b=2e8 =1e5 d=2e3 di=10 f=10 s=2e8 t=5.67e6;prop bulk=2e8 shear=2e8 fri=10;prop dens=2000 oh=0 ten=5.67e6 di=10m n i=1,9 j=15;prop bulk=4e10 shear=2e10 dens=2000;--- ensure bottom and right side of domain does not move ---;stru beam begin xbuket,ybuket end xl,yl;stru prop 1 den=2000 he=3fix y j=1fix x i=41;--- set large shows motion of grid element ---set largeset grav=9.81gen 0,0 xbuket,ybuket xl,yl xbottom,0 i=1,10 j=1,15gen xbuketthik,ybuketthik dev,height xtop,height xll,yll i=1,10 j=16,41gen xll,yll xtop,height length,height length,ybukettt i=10,41 j=16,41gen xbottom,0 xl,yl length,ybukett length,0 i=10,41 j=1,15;--- various ways to apply foring at boundary ---;apply pres=1e6 var 1e7 0 from 1,16 to 10,16;apply yfore=0 var 1e6 0 i=1,10 j=16apply yvel=0.0005 var 0.002 0 from 1,16 to 10,16apply xvel=0.0001 var -0.0004 0 from 1,16 to 10,16;apply xvel=0.001 from 1,16 to 10,16plot hold model bou fix apply beam



Chapter 4Print Quality on Paper: ModellingMissing and Perturbed Half-ToneDot ImagesPartiipants: John Oliver (Mentor), Seema Ali, Ella Huszti, Nathan Krislok, Marni Mishna.PROBLEM STATEMENT: During printing, statistially, it is possible for ink to transfer to either thepaper's pores, the �brous land areas, or to ombinations of these two physial extremes. Consequently,depending on the paper quality, serious limitations may arise in print quality. It would be invaluableto papermakers if, for a pulp of a given average �bre size distribution, they ould predit the optimumsurfae pore size distribution whih would have the least e�et on the shape and registration of ink dotsand hene print quality. Spei�ally, this projet set out to:� Estimate the statistial probability for mirosopi ink drops to miss mirosopi land areas, trans-fer through pores to a sub-layer resulting in mis-register on paper� Estimate the roundness of mirosopi drop images on a porous paper surfae with di�erent �breformation (land/pore distributions).
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Chapter 5Modelling Bath InterfaesPartiipants: Don Sott (Mentor), Jesse Bingham, Andriana Davidova, Margaret Liang, GordonO'Connell, Hope Serate.PROBLEM STATEMENT: Petroleum produts are most eonomially shipped in long distanepipelines. There an be signi�ant di�erenes between the harateristis of the various petroleumproduts that are shipped, so they are shipped in bathes of uids with similar harateristis. Whendi�erent produts with di�erent properties (suh as density and moleular visosity) are transported, itis important to be able to distinguish the boundary between them so that upon arrival at the terminalonseutive produts an be separated into their respetive tanks with a minimum of ontamination.The proess of separation is made diÆult beause during shipping an interfae develops betweenadjaent bathes as one omponent di�uses into the other. This interfae degrades the quality of thepetroleum produt. If it were possible to understand whih parameters determine the rate of growth ofthis interfae it may be possible to optimize bath shipments to redue produt degradation.Here we explore a model of bath interfae growth when two uids ow through a pipe of ylindrialgeometry under the driving fore of a onstant pressure gradient. These uids may have di�erent visosityor di�erent densities or both.
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CHAPTER 5. MODELLING BATCH INTERFACES 215.1 IntrodutionEnbridge Pipelines, In. presented a problem regarding interfae mixing when two di�erent petroleumproduts are shipped together in a single pipeline. The ompany maintains a 20 inh diameter pipelineand has observed that the volume of the interfae stabilizes at some point during shipping.Our approah to modeling the interfae between two uids is to present it as a time-dependentdi�usion proess. Turbulent ow throughout the pipeline ensures homogeneous mixing exept at bathinterfaes. One an appropriate solution to the di�usion equation is presented, the remainder of thereport desribes one way to estimate the volume of the bath interfae.5.2 Model assumptions and uid propertiesModel Assumptions The model desribed in Setion 5.3 makes the following assumptions:� The pipeline is straight and smooth.� Pipeline ows are fully turbulent.� The visosity and density of adjaent bathes in the pipeline are similar. Assume homogeneousmixing.� The petroleum produts in adjaent bathes are misible.In addition to the model assumptions, the following model parameters are onstant:� U = 2.235 m=s (ow speed).� d = 0.508 m or 0.610 m (pipe diameter).Fluid Properties Table 5.1 summarizes the uid properties for a number of petroleum produts beingshipped in Enbridge's pipeline. The visosities and densities were provided by Enbridge. This table alsoontains the Reynolds numbers and oeÆients of di�usion for eah petroleum produt, alulated for20 inh and 24 inh pipes. The Reynolds number is de�ned byR = Ud� (5.1)where U is the horizontal veloity of ow in m=s, d is the diameter of the pipe in meters and � is thevisosity of the uid in entistokes (10�6 m2=s).The oeÆient of di�usion was alulated for eah petroleum produt using the following relation(after Equation 5.1 in [9℄): K = 10:1 a U �v�U � (5.2)where a is the radius of the pipe in meters, U is the veloity of ow in m=s and the quotient � v�U � wasestimated using the following regression equation� Uv�� = 5:033602 (log10(R))� 4:013663 (5.3)where R is the Reynolds number estimated using Equation 5.1. This regression was �tted to the dataprovided in Table 2 in [9℄. Notie that the quotient � v�U � is ompletely determined by the Reynoldsnumber.1R20 is the Reynolds number for a 20 inh pipe, R24 is the Reynolds number for a 24 inh pipe.2K20 is the oeÆient of di�usion (m2=s) for a 20 inh pipe, K24 is the oeÆient di�usion (m2=s) for a 24 inh pipe.K was estimated using Equation 5.2.



22 CHAPTER 5. MODELLING BATCH INTERFACESFluid Densitykg=m3 Visosityentistokes R201 K202 R24 K24NGL 560 0.1 11,353,800 0.1820 13,624,560 0.2157Gasoline 700 0.4 2,838,450 0.2014 3,406,140 0.2383Diesel Fuel 800 0.9 1,261,533 0.2148 1,513,840 0.2539Syntheti Crude 585 5.5 206,433 0.2522 247,719 0.2974Condensate 672 0.5 2,270,760 0.2049 2,724,912 0.2424Sweet Lights 830 6.0 189,230 0.2543 227,076 0.2998Sour Lights 852 15.0 75,692 0.2791 90,830 0.3285Medium Crude 886 55.0 20,643 0.3238 24,772 0.3801Heavy Crude 920 170.0 6,679 0.3763 8,014 0.4400Table 5.1: Fluid Properties5.3 Di�usion modelSuppose that a pipe initially ontains uid A moving at some ow veloity U . At time t = 0 uid Bis injeted into the pipe at position X = 0 immediately adjaent to uid A. If the ow is turbulent, aregion develops along the pipe where uids A and B mix. This region is alled the interfae.Assuming a di�usion model, the above situation an be modeled using Fik's seond law whih isde�ned by Ct = K Cxx (5.4)where C(x; t) is the onentration of uid B in uid A at time t, x is some axial displaement from theorigin X = 0 moving in the diretion of ow, and, K is the oeÆient of di�usion due to the longitudinalomponents of turbulent veloity [9℄. For our purposes the ow veloity, U , is onstant. Assume thatthe onentration of uid B at the enter of the interfae is C = 12 .An appropriate solution to this di�usion equation isC(x; t) = 12 � 12erf �12 x K� 12 t� 12� (5.5)erf (z) = 2p� Z z0 e�y2 dy (5.6)We now show that Equation 5.5 is a solution to Equation 5.4. LetCt = �� t 24� 1p� Z 12xK� 12 t� 120 e�y2 dy35 (5.7)Then by the fundamental theorem of alulusCt = � 1p� exp"��12 x K� 12 t� 12�2# 12 x K� 12 ��12� t� 32 (5.8)= x4K 12p�t 32 exp�� x24Kt� ; (5.9)Cx = �12 �� x 24 2p� Z 12xK� 12 t� 120 e�y2 dy35 (5.10)= � 1p� exp�� x24Kt� 12 K� 12 t� 12 (5.11)= � 12K 12 t 12p� exp�� x24Kt� ; (5.12)



CHAPTER 5. MODELLING BATCH INTERFACES 23and Cxx = x4K 32 t 32p� exp�� x24Kt� : (5.13)So Ct = K Cxx (5.14)5.4 Results5.4.1 Determining the length of the interfaeFor the model desribed in Setion 5.3 the relation between the length of the interfae, S, and thee�etive di�usivity, K, an be de�ned as [9, 8℄:S = 4pKt erf �1(2y � 1) (5.15)where t is the elapsed time of ow from the point of injetion to the point of separation (shipping time),K is the oeÆient of di�usion and y is the allowable frational purity. Equation 5.15 suggests thatS / t 12 and S / K 12 .The estimated values of K (Equation 5.2) for several petroleum produts is summarized in Table 5.1.Some values for the inverse error funtion are tabulated in Table 5.2[8℄.y erf �1(2y � 1)0.50 0.0000.80 0.5940.90 0.9010.95 1.1650.97 1.3280.99 1.6401.00 |Table 5.2: Inverse error funtion at seleted values of frational purity.Figures 5.1 and 5.2 ontain plots of the shipping time versus bath interfae volume for NGL, synthetirude and heavy rude in a 20 inh and 24 inh pipeline respetively.As an example of how to interpret these plots, onsider a senario where uid A is syntheti rudeand uid B is NGL. Then by Equation 5.15, if the frational purity is set to y = 0:99, we would expeta 504 m3 interfae to develop between these bathes along Enbridge's pipeline between Edmonton andSuperior WI assuming a 20 inh pipe and a shipping distane of 1100 miles. For a 24 inh pipe theinterfae volume would be about 790 m3. If the relative positions of uid A and uid B are reversed(syntheti rude di�using into NGL), we would expet an interfae volume of 593 m3 for the 20 inhpipe and 928 m3 for the 24 inh pipe, over the same shipping distane.5.5 ConlusionIn this report we have studied how the di�usion model desribed by Taylor [9℄ might be used to preditbath interfae volumes in a biuid petroleum pipeline. How the predited interfae volumes ompareto the observed volumes of ontamination is a good subjet for future work.During the analysis of this di�usion model two major onerns arose:1. The most ritial model parameter appears to be K, the oeÆient of di�usion. The estimators forK given by Taylor [9℄ and Sjeitzen [8℄ are very similar, both authors assuming straight pipelineswith smooth walls. Auniky [1℄ on the other hand suggests that Taylor's estimator for K is



24 CHAPTER 5. MODELLING BATCH INTERFACESmore appropriate for short haul pipelines. The estimator ited in [1℄ for long haul pipelines givesestimates two orders of magnitude lower. If this lass of di�usion oeÆients were used withEquation 5.15 the estimated interfae volumes would be signi�antly lower.2. The equation used to estimate the volume of bath interfaes (Equation 5.15), ontains the pa-rameter y, the frational purity at the tails of the interfae. We found no adequate explanation ofhow one might use this parameter. Should this value be set high when shipping uids whih aresensitive to ontamination? Can this parameter be lowered if a higher degree of ontamination isaeptable?
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Figure 5.1: Estimated interfae volume for a 20 inh pipe.

0

200

400

600

800

1000

1200

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05

V
ol

um
e 

of
 in

te
rf

ac
e 

(c
ub

ic
 m

et
er

s)

Shipping time (seconds)

NGL (K=.2157)
Synthetic Crude (K=.2974)

Heavy Crude (K=.4400)

Figure 5.2: Estimated Interfae volume for a 24 inh pipe.



Chapter 6Initiating 3-D Air Target Traksfrom 2-D and 1-D Sensor Reportsfor the Canadian Patrol Frigate(CPF)Partiipants: Pierre Valin (Mentor), Hassan Aurag, Vesselin Jungi, Mounia Kijri, Tamara Koziak,Joe Sawada.PROBLEM STATEMENT: The 2 topis studied here involve target traking from the CanadianPatrol Frigate (CPF) and an be also used in ivilian appliations suh as airport traÆ management.The single target problems presented here are relatively straightforward and will be later used by industryfor multiple target problems where assoiation beomes the key issue. The added sensory omponentsfurnished by these problems will help resolve the assoiation problem by providing information hiddenfrom the sensors and revealed only through mathematial modeling and related algorithmi proessing.In partiular, one wishes to initiate a 3-D trak from lower-dimensional (2-D for radar and 1-D forEletroni Support Measures) ontat data.
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26 CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATE
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bFigure 6.1: The geometry for an airraft at onstant speed and altitude seen by the CPF.6.1 IntrodutionThe situation studied is that of an air target being traked by a 2-D naval radar or a 1-D EletroniSupport Measures (ESM) sensor and onsists in initiating at long range (or promoting it at a later time)a 3-D trak from the 2-D and 1-D sensor reports. The radar is an ative sensor that an report slantrange and bearing to target, while the ESM is a passive sensor that only detets hanges in bearing.The problem is to �nd an airraft's altitude, speed and trajetory (say for a sub-Mah 1 plane) fromthe CPF's slant range and bearing (w.r.t. true North) report sequene whih an be assumed to be atregular intervals (say 5 seonds equivalent to 12 RPM), hereafter referred as ontats (Ri; �i), i 2 [1; N ℄.At large distanes the target airraft will not have moved signi�antly enough to a�et the assumptionof nearly regular intervals. Furthermore, we assume that the Earth an be onsidered at when theradar range is muh smaller than the Earth's radius. The extension to a urved earth involves standardurvilinear oordinates and geodesis. Figure 6.1 shows a simple ase of a plane travelling in a straightline at an unknown altitude, an expeted behaviour for a plane just entering the radar's outer rangeextent (and therefore ruising nonhalantly, unaware of the CPF's presene through its own ESM).Having an answer for the problem above is important when the target has a malfuntioning Interrog-ative Friend and Foe (IFF) sensor (whih an report altitude of a friendly airraft) or deides to remainirumspet (as would be the ase for an enemy airraft).Throughout this report, we shall work in the ylindrial oordinates shown in Figure 6.1 and assumethat the earth an be onsidered at, whih is reasonable for a ship with a limited sensor range and thusa limited horizon. This assumption is however not reasonable for an airraft ying at high altitudes,where the urved earth beomes relevant due to the extended horizon. The ylindrial system entered onthe CPF onsists therefore of plane polar oordinates in the at Earth's xy-plane together with altitudeforming a righthanded oordinate system. It is related to the traditional Cartesian system (x; y; z) by theonvention that the y-axis is in the diretion of the true north and that inreasing bearing is measuredfrom true north (in a CW diretion) as opposed to the traditional method of inreasing polar angle fromthe x-axis in CCW fashion. It is not diÆult to see thatx = � sin� y = � os� ~r 2 = R2 R2 = �2 + z2:We will �rst desribe the simulator from ground truth information from a 2-D radar. This is followed bya desription of how this simulated data is used by several asaded algorithms to orretly extrat all the



CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATE 27desired quantities from the target's sensor reports (speed, altitude and trajetory) in the noiseless ase.The algorithms are then submitted to noisy data (unlassi�ed sensor auraies are used). Algorithmdesign development for 1-D ESM reports then follows. Finally onlusions explain the use of suhextrated data for Multi-Sensor Data Fusion (MSDF) and follow-on work is outlined, in partiular theneed to use lassi�ed data for the simulations (espeially for the ESM), whih is out-of-sope for thisunlassi�ed report.6.2 Radar Data SimulationWhen a target is traked by a naval radar, the sensor reports information regarding the slant range andthe bearing (w.r.t. true north) of the target. To simulate this data we reate disrete 3-D o-ordinates(xi; yi; zi) to indiate the target's position at time i with respet to the radar sensor. We then use thisdata to determine the slant range and the bearing. The slant range R =px2 + y2 + z2 and the bearingis omputed by � = artan(xi=yi). In the simulated data it is assumed that the radar reports at onstanttime intervals of 5 seonds (12 RPM). The simulation program was written in C.In the �rst simulation we assumed that the radar gave exat information regarding range and bearing,i.e. noiseless data. In pratie, however, the data will be perturbed by white noise. We assume that thenoise follows a Gaussian distribution. Thus to generate reports with white noise we need to randomlygenerate Gaussian distributed values to perturb the exat range and bearing. Algorithms to generatenormally distributed random numbers with 0 mean and unit variane are given in "Numerial Reipes"by Press et al. Sine these numbers are generated with unit variane, we multiply these values by thestandard deviation for both the range (100 m) and the bearing (1 degree or 1/57 radians) respetively.The resulting values are then added to the exat range and bearing to simulate reports with white noise.The above numbers are meant only as a guide beause in reality radar parameters values tend to besmaller than these values: indeed, for the long range SPS-49, the standard deviations are about half theabove quoted values and for the short range SG-150 about 5 times smaller (or better). Throughout thisreport, representative values are used and the industrial partner will put in the true (often lassi�ed)values later.In one simulation shown in Figure 6.1 we have a target starting at loation (in km) (100,100,6)travelling at 0.2 km/s in the negative x diretion. If we assume that y is �xed, then we an use theperturbed data to get perturbed values for the positions x and z. We ompute x by multiplying the�xed value for y by the tangent of the perturbed angle �N . For z we use use �xed y, and perturbed xNand RN . Thus: xN = y tan�N and zN =p(RN )2 � (xN )2 � y2.Note that in this ase if the true z is small relative to the atual range R, then by perturbing R evenby a small amount we will see a large di�erene between atual z and zN . As the target gets loserhowever (z larger w.r.t. R), this di�erene dereases as an be seen in Figure 6.2.6.3 Constrution and solution of sets of oupled nonlinear equa-tions for radar reportsTwo separate approahes an be investigated, the �rst an obtain speed and altitude but not the tra-jetory, while the seond an obtain altitude and the trajetory but not the speed. Sine all of thesequantities are useful, the �nal solution will onsist of a mixture of the two methods desribed below.Both the speed and altitude are attributes needed by a Multi-Sensor Data Fusion (MSDF) modulefor identi�ation. Indeed, one an exlude from all possible air platforms, all those whose doumentedmaximum speed is less than the measured speed and whose doumented maximum altitude is less thanthe measured altitude. The trajetory itself is needed to initialize a Kalman �lter with the proper statevetor.
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Figure 6.2: Noisy range and bearing data a�eting the pereived altitude.6.3.1 Obtaining speed and altitudeFrom Figure 6.1, it is easy to see that we have the following relation in the xy plane, sine the speed Vis onstant: j~�k+1 � ~�kj2 = v2�t2Here, ~�k is the projetion of the position vetor of the plane at ontat k onto the xy plane. Expliitlytaking the modulus and using �2 = R2 � z2 we haveR2k+1 +R2k � 2z2 � 2qR2k+1 � z2qR2k � z2 os(�k+1 � �k) = v2�t2For onveniene, one an resale by a �xed value of R (say the �rst value R1) and obtain in terms ofR = RR1 and z = zR1 . This allows dimensionless variables to appear in omputer programs, obviatingthe deision for a system of units.R2k+1 +R2k � 2z2 � 2qR2k+1 � z2qR2k � z2 os(�k+1 � �k) = �v�tR1 �2This equation involves only two unknowns, namely the speed v and altitude z, but does not allowdetermination of the atual trajetory in the projeted x� y plane.6.3.2 Obtaining the atual trajetoryWe represent eah point M 0(x; y; 0) belonging to the xy-plane in the terms of � and � (see Figure 6.3).Here p0 is the orthogonal projetion of p into the xy-plane.Note that we assume that the line p is parallel to the xy-plane ( at onstant z) and that we anmeasure the values of the range r and the bearing � for a number of pointsM from the line p. Clearly, theproblem is to �nd the distane between the line p and the xy-plane. Indeed, let the set fM1;M2; : : : ;MNg
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Figure 6.3: Notation for deriving the atual airraft trajetory.represents N points of the line p and let the pair (ri; �i) represents the range and bearing w.r.t. Mi, fori 2 [1; N ℄ (see Figure 6.3). Let P be the plane that ontains p and p0. We assume that the line p0 doesnot pass through the origin, i.e., we onsider the ase where the airplane does not y overhead. Let 2 R and let a; b 2 R be suh that the equation of P isax+ by =  :Hene a and b depend of the hoie of . The idea behind this approah is that with the suitable hoieof  we an make our future alulations faster.From the de�nition of x and y in terms of � and � and the fat that M 0i 2 p0, we have that for alli 2 [1; N ℄ �i(a sin�i + b os�i) =  :From the triangle OMiM 0i we have that R2i � z2 = �2i and, onsequently,(a sin�i + b os�i)2(R2i � z2) = 2 :Let z = z and Ri = Ri (for example  an be onveniently hosen to be R1). Then, for all i 2 [1; N ℄(a sin�i + b os�i)2(R2i � z2) = 1:Hene, the values of z; a, and b are solutions of this system of N nonlinear equations with 3 unknowns.In the noiseless ase, i.e., in the ase where the exat values of Ri and �i, i 2 [1; N ℄, are obtained, thesystem has a solution and that solution is unique.This approah has three unknowns and experiene has shown that any routine that tries to �nd thesimultaneous solution to (at least) 3 suh equations is likely to experiene problems. In the noisy ase,�nding the "best �t" to a set of suh equations often leads to false minima.6.3.3 Combined solutionThe best solution is obtained by �nding v and z through method 1, then inserting that value of z intomethod 2 to �nd a and b. Note that although both methods involve equalities in the noiseless ase,roundo� errors from the simulator and noisy data in the real-life ases warrant the use of �nding onlyapproximate solutions to the sum of squares of suh equations. We then have a problem of �nding the
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χ2 Fitted z True z Fitted v True v b/a

4.26992 10-9 4.9708 5. 0.360553 0.3605 -0.666669
4.25659 10-9 7.0107 7. 0.360557 0.3605 -0.666676
4.25963 10-9 8.9964 9. 0.360555 0.3605 -0.666673
4.25678 10-9 11.005 11. 0.360556 0.3605 -0.666675Table 6.1: Table of results for onstant speed for varying altitude.

χ2 Fitted z True z Fitted v True v -a/b True -a/b

4.67839 10-7 5.91902 6. 0.399611 0.4 -0.297673 -0.3
2.43387 10-7 6.07964 6. 0.399998 0.4 0.000028634 0.0
2.1768 10-7 5.9749 6. 0.399604 0.4 0.297641 0.3
4.99305 10-8 5.99207 6. 0.398733 0.4 0.599412 0.6
3.05118 10-9 6.00072 6. 0.399372 0.4 0.898990 0.9
4.94943 10-17 6. 6. 0.398808 0.4 -1.11642 1.0Table 6.2: Table of results for onstant speed and altitude but varying attak angles.least square solution to an arbitrary number (> 2) of suh solutions. We therefore onsider the set ofthe funtionsg(v; z) = R2k+1 +R2k � 2z2 � 2qR2k+1 � z2qR2k � z2 os(�k+1 � �k)� �v�tR1 �2fi(a; b; z fixed) = (a sin�k + b os�k)2(R2k � z2)� 1; k 2 [1; N ℄The goal is then to minimize the sum of squares of any of the above equations. One thus starts byminimizing the sum of squares of the �rst one minPNk=1 g2k(v; z) to obtain speed and altitude, theninserts the results in the seond equation minPNk=1 f2k (a; b; z) to obtain a and b. Note that results areexpeted to improve as N inreases, partiularly for noisy data, sine the bath �t inludes more pointsthat would �t the straight line. The omputation of the least squares solution has been implementedusing Mathematia's FindMinimum utility. The usage and implementations notes for the FindMinimumutility are the following. With Method ! Automati (whih is the one we hose), FindMinimum usesvarious methods due to Brent: the onjugate gradient in one dimension, and a modi�ation of Powell'smethod in several dimensions; With Method ! Newton, FindMinimum uses Newton's method; WithMethod ! QuasiNewton FindMinimum uses the BFGS version of the quasi-Newton method.6.4 Noiseless ase for radar ontatsIn the �rst simulation, we take a onstant speed, given trajetory and vary the altitude by steps of 2 km.The inputs are various slant range and bearing readings. The output is speed, altitude and diretion, asmeasured by the ratio of b and a.In the seond simulation, we take di�erent angles of approah for the target (or trajetories). Theinput and output types are the same.An implementation of suh a proess should be done in C. Suh a C-routine should �rst start bygetting a good speed evaluation. With the speed obtained after N-steps at an aeptable preision,the routine should then restart by setting the speed orretly. It then should disard any o�-range
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Figure 6.4: ESM geometry onstrution in the x� y plane.readings of slant ranges. The previously shown Figure 6.2 shows how noise a�ets readings of thealtitude and explains the failure of the straightforward approah to ompute the altitude. One shouldalso reall, that we do obtain the orret speed even in noisy environment. Benhmarking an be donethrough simulated noiseless data versus noisy data. The bias in noisy data an be tabulated and theoutliers removed through these simulations. Real data, being intrinsially noisy, would then use thesame outlier trunation mehanism. One also probably will have to use something di�erent from leastsquares minimization. An example would be using maximum logarithm likelihood.6.5 ESM Bearing-only Reports - two approahesThe sensor being used to trak targets on Eletroni Support Measures unit (ESM) only reports a time-sequene of their bearing �(ti) when the bearing hange attains a ertain value ��. This naval sensorannot report the airborne target's slant range nor its projeted range on the Earth. Beause of thelassi�ed nature of the ESM parameters �� and its maximum range, no simulations were performedat the Workshop and the methods will be tested for e�etiveness by the industrial partner at a latertime. The problem that we disuss in this setion is how one an obtain a rough estimate of thetarget's slant range (and ultimately its range and altitude, by using the result s of Setion 6.3.1) fromthe observed bearing rate (i.e., a sequene of di�erent ti for a onstant ��) through analytial andnumerial analysis/simulations. Again there are two ompeting approahes whih have the potential tobe ombined into a �nal optimized solution.6.5.1 One ApproahFigure 6.4 shows the projetion on the plane xOy of the trajetory of the airraft.The purpose of this part is to be able to determine the diretion of the airraft. We must keep inmind that we suppose that the veloity v of the airraft is onstant. If �t1 is the variation of timebetween t0 and t1, and d1 is the assoiate displaement, then we haved1 = v�t1:



32 CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATESimilarly, if �tk is the variation of time between tk�1 and tk, and dk is the assoiate displaement, thenwe have dk = v�tk:So using those two equations, we get dk = �tk�t1 d1:Now, using the law of sines for the two triangles obtained in the ase where k = 1 and k = 2, we gettwo equations: sin��d1 = sin�10and sin 2��d1 + d2 = sin�20 :Sine �� + �1 +  = � and 2�� + �2 +  = �, we get �2 = �1 ���. On the other hand, we also haved2 = �t2�t1 d1: So the two equations beome: sin�1sin�� = 0d1and (1 + �t2�t1 ) sin(�1 ���)sin 2�� = 0d1 :We �nally have: sin�1 = (1 + �t2�t1 ) sin(�1 ���)2 os�� :We then obtained �1, and sine �� + �1 +  = �, we get , and so we have the diretion of the plane.If we go bak to the law of sines, we have sin��d1 = sin�10and sin k��d1(1 +Pk2 �ti�t1 ) = sin k :So if we just have 0, we then get d1 (so we know the plane's speed), and so all the k. We then have thetrajetory of the plane and not only its diretion. This ould be ahieved for example by using only afew radar returns (ensuring near eletromagneti silene of the CPF) or by using Link-11 time-updatedtraks from Partiipating Units for an approximate range.6.5.2 Another ApproahSuppose that the veloity of the target is given by~v = vx~i+ vy~j :Also suppose that N ontats have been reported. Let fM1;M2; : : : ;Mng is the set of points so that thepointMn represents the position of the target at the time tn of the nth ontat. Let �tn = tn+1�tn andlet �n = �(tn) be the bearing reported at the time tn. We assume that �1; : : : ; �N form an arithmetiprogression with the ommon di�erene equal ��, where �� is positive but very small. As before, rn isthe slant range of Mn and �n is its projeted range. Figure 6.5 illustrates the situation we shall disuss.Sine the veloity is ~v = vx~i+ vy~j, we have thatxn+1 = xn + vx ��tnyn+1 = yn + vy ��tn
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Figure 6.5: ESM geometry onstrution.suh that, as before, �n+1 sin�n+1 � �n sin�n = vx ��tn�n+1 os�n+1 � �n os�n = vy ��tn :We onsider these two equations as a linear system with �n+1 and �n as unknowns. Note that���� sin�n+1 � sin�nos�n+1 � os�n ���� = � sin�� 6= 0 :Thus, �n = vx os�n+1 � vy sin�n+1sin�� ��tn :Consequently, for any n 2 [1; N ℄z2 = R2n � (vx os�n+1 � vy sin�n+1)2(sin��)2 � (�tn)2 :Hene, from the given data, we have obtained a nonlinear system with N equations and N+3 unknownsz; vx; vy; R1; : : : ; Rn One observes that the projetions of M1; � � � ;MN into xy plane belong to the linevyx� vxy = where  is suh that = vy�1 sin�1 � vx�1 os�1 = (vx os�2 � vy sin�2)(vy sin�1 � vx os�1)sin�� ��t1 :Thus, the line p is given, as before, by Ax+By = C whereA = vy(vx os�2 � vy sin�2)(vy sin�1 � vx os�1) ;B = � vx(vx os�2 � vy sin�2)(vy sin�1 � vx os�1) ;



34 CHAPTER 6. TARGET TRACKS FOR THE CANADIAN PATROL FRIGATEand C = �t1sin�� :To obtain an approximate value of z we follow these steps.1. Choose � 2 R+.2. De�ne, for eah n 2 [1; N ℄rn;� = rn;�(vx; vy) =s�2 + (vx os�n+1 � vy sin�n+1)2(sin��)2 � (�tn)2 :3. Solve the system (A sin�n +B os�n)2(R2n;� � z2) = 1where Rn;� = Rn;�C :Note that the unknowns are z; vx, and vy. Also, this situation is the same as the problem that wedisussed in Setion 6.3.1.Alternatively, �nd (z� ; vx;� ; vy;�) 2 R3 so that ifgi(z; vx; vy) = (A sin�n +B os�n)2(R2n;� � z2)� 1then NXi=1(gi(z� ; vx;� ; vy;�))2 = minf NXi=1(gi(z; vx; vy))2 : (z; vx; vy) 2 R2g:4. If (z� ; vx;� ; vy;�) is the solution of the system from 3. above, �ndz� = z� � C:5. Compare z� and �. If z� and � are \lose", we are done. If they are not, iterate over �, whihdesribes a family of possible solutions, until z� and � are \lose" enough.6.6 Conlusions and OutlookThis projet studied how to initiate (or promote) higher dimensional air traks from lower-dimensionalontats. At least two design solutions were onstruted for eah of the two ases: a 2-D radar andan ESM sensor. The omplete solution was implemented for the 2-D radar with perfet results in thenoiseless ase and promising results for the noisy ase. Due to the lassi�ed nature of ESM spei�ations,the ESM designs will be implemented at a later date by the industrial partner.The tehniques used in this report determine �rst the speed and altitude whih are attributes neededby a Multi-Sensor Data Fusion (MSDF) module for identi�ation. Indeed, one an exlude from allpossible air platforms all those whose doumented maximum speed is less than the measured speed, andwhose doumented maximum altitude is less than the measured altitude. These values have been tabu-lated by Lokheed Martin (LM) Canada in a Platform Database whih now ontains over 140 platforms.For eah of these dedued attributes, propositions an be onstruted that ontain all platforms withonsistent attributes and these propositions are then fused in an evidential reasoning sheme suh as atrunated Demspter-Shafer algorithm developed at LM Canada. Finally, the trajetory itself is neededto initialize a Kalman �lter with the proper state vetor. In addition, optimization routines an providean estimate of parameter errors (here veloity and altitude, as well as the atual trajetory), whih anbe used to onstrut an initial ovariane matrix for the Kalman �lter.
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