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The Pacific Institute for the Mathematical Sciences 
(PIMS) sponsors and coordinates a wide assortment of 
educational activities for the K-12 level, as well as for 
undergraduate and graduate students and members 
of underrepresented groups. PIMS is dedicated to 
increasing public awareness of the importance of 
mathematics in the world around us. We want young 
people to see that mathematics is a subject that opens 
doors to more than just careers in science. Many 
different and exciting fields in industry are eager to 
recruit people who are well prepared in this subject.

PIMS believes that training the next generation of 
mathematical scientists and promoting diversity 
within mathematics cannot begin too early. We believe 
numeracy is an integral part of development and 
learning.

For more information on our education programs, 

The cover image is the Tuman Aqa Mausoleum in the 
Shah-i-Zinda Complex in Samarkand, Uzbekistan. It was 
taken by Peter Lu, a Harvard-based physics researcher. 
Ancient Islamic buildings are often decorated with 
beautiful tile patterns as in the cover image. Lu, while 
he was working on his Ph.D. discovered that these 
patterns are, in many cases, quasi-crystals. 

Crystals are periodically repeating patterns (such as 
squares making up a grid, or interlocking hexagons). 
These patterns may have rotational symmetry (they may 
look the same if the entire pattern is rotated) but as has 
been known since the 19th century, the only possible 
rotation amounts are by 60, 90, 120 or 180 degrees 
(that is 2-fold, 3-fold, 4-fold and 6-fold symmetry). In 
the 1980's, parallel developments in mathematics 
and materials science showed the existence of a 
mathematical basis for materials with 5-fold and 10-
fold symmetry. These fascinating structures are not 
periodically repeating like standard crystals, but they 
share many properties with crystals. 

Peter Lu's remarkable discovery was that in spite of 
the fact that quasi-crystals were only identified and 
studied in the late 20th Century, their development was 
anticipated in medieval Islamic architecture in the form 
of the tilings that adorn some important ancient Islamic 
buildings. Lu has taken stunning photographs of these 
buildings, and hypothesized ways in which labourers 
constructed the tilings - even managing to identify 
places in which the labourers made errors in following 
the designs. 

For more details, see Peter Lu's website: 
peterlu.org 

For an article in Discover Magazine on his work: 
discovermagazine.com/2008/jan/math-breakthrough-
spotted-on-mosques
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LET US BEGIN WITH A SIMPLE QUESTION: 
What shape is the earth? Round, you say? Ok, 

but round like what? Like a pancake? Round like 
a donut? Like a soft pretzel? Some other tasty, 
carbohydrate- laden treat? No, no—it’s round like a 
soccer ball. But how do you know? ...Really, how do 
you know? Perhaps you feel sure because you’ve seen 
photos of the earth from space. Well, people figured 
out that the earth is round long before we figured 
out how to build rocket ships (or cameras, for that 
matter!).

Scientists as far back as the ancient Greeks theorized 
that the earth is round. Although they offered no 
substantive proof of their theories, Pythagoras, Plato, 
and Aristotle were all supporters of the spherical 
earth theory, mostly based on the curved horizon 
one sees at sea. Surely this suggests that the earth is 
not flat like a pancake, but how can we know that the 
earth isn’t some other round shape, like a donut, for 
example?

If we were to walk around the entire earth, then 
we can come up with plenty of reasons that it’s not 
shaped like a donut.

The most obvious, perhaps, is that if the earth were 
a donut, there would be some places where we could 
stand and look directly up into the sky and see more 
of the earth! Also, there would be places where the 
curve of the horizon would be upwards instead 

of downwards. But how can we really, truly know 
that the shape is that of a ball and not some other 
strange shape that we haven’t yet thought up? As a 
thought experiment, pretend for a moment that you 
are locked in a room with thousands and thousands 
of maps of various places on Earth. Suppose you 
have enough maps so that you have several for every 
point on the globe. Could you determine the shape 
of the earth? Yes! You need only paste together the 
maps along their overlaps.

This basic idea is exactly the idea that underlies the 
way mathematicians think about surfaces. Roughly 
speaking, a surface is a space in which every 
point has a neighborhood that “looks like” a two-
dimensional disk (i.e. the interior of a circle, say 
{x, y  IR 2 | x2 + y2 < 1}.)

MATHEMATICAL CUT-AND-PASTE: 
An Introduction to the Topology of Surfaces
BY MAIA AVERETT

Associate Professor of Mathematics and Head of 
Mathematics and Computer Science, Mills College. 

A mathematician named Klein 
Thought the Möbius band was divine. 
Said he, “If you glue 
The edges of two, 
You’ll get a weird bottle like mine.”

-Anonymous

Fig. 2: A surface with boundary.

Fig. 1: A donut Earth? Why not?.
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A sphere is an example of a surface, as is the surface 
of a donut, which mathematicians call a torus. Some 
of our everyday, natural notions of surfaces don’t 
quite fit this definition since they have edges, or 
places where you could fall off if you weren’t careful! 
Mathematically, these are surfaces with boundary: 
spaces in which every point has a neighborhood that 
looks like either a two-dimensional disk or half of a 
two dimensional disk (i.e. ...
{x, y  IR 2 | x2 + y2 < 1, y ≥ 0}). The old circular 
model of the earth where you can sail off the edge 
is an example of a surface with boundary. Another 
example is a cylinder without a top and bottom. 
Now that we know what a surface is, let’s to try 
to figure out what kinds of surfaces are out there. 
Here, we’re going to examine this question from 
a topological point of view—we’ll be interested 
in the general shape of the surface, not in its size. 
Although the geometric notions of size and distance 
are quite important in reality, topologists seek to 
understand the coarser structure of surfaces as a first 
approximation to understanding their shape. 

For example, from a topological point of view, a 
sphere is a sphere, it doesn’t matter how large 
or small the radius is. To this end, we will allow 
ourselves to deform and manipulate surfaces as if 
they were made of rubber sheets: we’ll consider two 
surfaces to be the same if we can stretch, shrink, 
twist, push, or wriggle one surface around until 
it looks like the other surface. But we will have to 
be nice in our deformations: topologists aren’t so 
violent as to create holes or break or tear any part of 
our surface. So, an apple would be considered the 
same as a pear, doesn’t matter if it has a big lump on 
one end. A flat circular disc is the same as the upper 
half of the surface of a sphere, even though the latter 
is stretched and curvy.  The classic joke in this vein 
is that a topologist can’t tell the difference between a 
coffee cup and a donut. If we had a flexible enough 
donut, we could make a dent in it and enlarge that 
dent to be the container of the coffee cup, while 
smooshing (certainly a technical topological term) 
the rest of the donut down in to the handle of the 
coffee cup.

Let’s begin by trying to make a list of surfaces that 
we know. What surfaces can you think of?  The 
first one that comes to mind is the surface of the 
earth: it’s a sphere. (Note here that we’re only talking 
about the surface of the earth, not all the dirt, water, 
oil, and molten rock that make up its insides! Just 
the surface—like a balloon.) Another surface that 

comes up a lot is the torus, which is shaped like an 
innertube. For the most part here, we’re going to 
restrict our investigation to compact (which means 
small in the loose sense that they can be made up of 
finitely many disks patched together) and connected 
(made of one piece, i.e. you can walk from one point 
to every other point on the surface without jumping). 
We will see some examples of surfaces with 
boundary because they are surfaces that you may 
be familiar with. As mentioned before, a cylinder 
without a top or bottom is a surface with boundary. 
A Möbius strip is a surface with boundary.

Drawing surfaces on paper or on the blackboard 
is difficult. One needs quite an artistic hand to 
convey the shape of an object that lives in our three-
dimensional world accurately on two-dimensional 
paper. However, we’ll see that it’s easy and quite 
convenient to record cut-and-paste instructions for 
assembling surfaces with a simple diagram on a flat 
piece of paper.

We take our inspiration from maps of the world. 
In a typical world map, the globe is split open 
and stretched a bit so it can be drawn flat. We all 
understand that if we walk out the right side of the 
map, we come in through the left side at the same 
height. This is a pretty useful idea! 

We can imagine a seam on a globe that represents 
this edge. We can think of taking the map and gluing 
up the left and right edge to return to our picture of 
the globe.
There is one slight dishonesty in the typical world 

Fig. 3: Map of the world [11] 
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map: the representations of very northerly and 
southerly parts of the earth aren’t very accurate. 
They’re much bigger on the map than they are in 
reality! In fact, the entire line at the top edge of 
the map really represents just a single point on the 
globe, the north pole. Similarly, for the bottom edge 
and the south pole. We can make a more honest 
map by shrinking these edges down so that we have 
one point at the top and one point at the bottom, 
representing the north and south poles, respectively. 
Then our resulting picture is a circle! It has the same 
properties with respect to walking out through the 
right edge and coming back in through the left. We 
can record this information by drawing arrows 
on the boundary of the circle to indicate how we 
are to glue up the picture to create a globe. It’s a 
lovely picture: if we glue up one semicircular edge 
of a circle to the other semicircular edge (without 
twisting!) then the resulting surface is a sphere. Let’s 
look at some more examples of how this works.

Example 1 (The cylinder). We can create a cylinder 
by using a piece of paper and gluing the ends 
together. Thus we can write down instructions for 
making a cylinder by drawing a square and labeling 
a pair of opposite edges with a little arrow that 
indicates gluing them together.

Example 2 (The torus). The diagram above [8]
represents a gluing diagram for the torus. To see 
this, first imagine bringing two of the edges together 
to form a cylinder. Since the circles at the top and 
bottom of the cylinder are to be glued together, we 
can imagine stretching the cylinder around and 
gluing them to obtain a surface that looks like the 
surface of a donut. Now, let’s practice thinking about 
how walking around on the surface is represented on 
the diagram. If we walk out the left edge, we come 
back in the right edge at the same height. Similarly, 
if we walk out the top, we come in the bottom at the 
same left-right position. It’s like PacMan!

Exercise 1. Imagine you are a little two-dimensional 
bug living inside the square diagram for the torus 
above. You decide to go for a walk. Trace your path. 
Be sure to exit some of the sides of the square and 
be careful about where you come back in! Do this 
several times. Draw some torus gluing diagrams of 
your own and practice some more.
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Example 3 (The Möbius Strip). What happens if we 
start with a square and identify a pair of opposite 
edges, but this time in opposite directions? The 
resulting surface is a Möbius strip!

Exercise 2. A cylinder has two boundary circles. How 
many boundary circles does a Möbius strip have?  

Example 4 (Klein bottle) (Fig 5). What happens if we 
reverse the direction that we glue one of the pairs of 
edges in the diagram that we had for the torus? We 
can begin by again gluing up the edges that match up 
to create a cylinder. But now if we try to stretch it out 
and glue the boundary circles together, we see that the 
arrows don’t match up like they did for the torus! We 
can’t just glue the circles together because our gluing 
rule says that the arrows must match up. 

The only way to imagine this is to imagine pulling one 
end of the cylinder through the surface of the cylinder 
and matching up with our circle from the inside. The 
resulting representation of the surface doesn’t look 
like a surface, but it really is! It’s funny appearance is 
just a consequence of the way we had to realize it in 
our three-dimensional world.

Exercise 3. Imagine you are a little two-dimensional 
bug living inside the square diagram for the Klein 
bottle above. You decide to go for a walk. Trace your 
path. 

Be sure to exit some of the sides of the square and be 
careful about where you come back in! Do this several 
times. Draw some Klein bottle gluing diagrams of 
your own and practice some more!

Fig. 6: Projective plane [10] 

Fig. 4: Möbius strip[12] 

Fig. 5: Klein bottle [9] 
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Example 5 (The projective plane) (Fig 6). What 
happens if we reverse not just one of the pairs, but 
both of the pairs of edges in our diagram for the 
torus? The resulting surface is called the projective 
plane and it is denoted IRP2. It’s hard to imagine what 
this surface looks like, but our square diagram will 
allow us to work with it easily!

Exercise 4. Imagine you are a little two- dimensional 
bug living inside the square diagram for IRP2 above. 
You decide to go for a walk. Trace your path. Be sure 
to exit some of the sides of the square and be careful 
about where you come back in! Do this several times. 
Draw some IRP2 gluing diagrams of your own and 
practice some more!

Definition 1. A gluing diagram for a polygon is an 
assignment of a letter and an arrow to each edge of 
the polygon.

With this general definition, not every gluing 
diagram represents a surface. For example, if three 
edges are labeled with the same letter, then these 
glue up to give something whose cross section 
looks like !  However, if we assume that the edges 
are always glued in pairs, then the resulting pasted 
up object will always be a surface. Here’s why. It’s 
clear that every point in the interior of the polygon 
has a neighborhood that looks like a disk. A point 
on one of the edges but not on a corner has a 
neighborhood that looks like a disk if we think 
about the corresponding point on the edge that it’s 
glued to and draw half- disks around each of them. 
A point on one of the corners can similarly be given 
a neighborhood that looks like a disk.

Example 6. The squares that we thought about above 
for the cylinder, the torus, the Klein bottle, the 
Möbius strip, and IRP2 are gluing diagrams for these 
surfaces.
 
Exercise 5. What surface is represented by the gluing 
diagram below? 
 

There might be many different diagrams that 
represent the same surface. For example, we could 
draw the diagram for the torus in the following 
ways (and this isn’t even remotely all of them!). The 
important thing for a square to represent the torus is 
that opposite edges are identified without twists.

One technique for showing that two gluing diagrams 
represent the same surface is to take one of the 
diagrams, cut it, and reglue it (possibly repeatedly) 
until it looks like the other.
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Example 7 (A Klein bottle made from two Möbius 
strips). In this example, we’ll show that gluing two 
Möbius strips together along their boundary circles 
results in the Klein bottle. This explains the limerick 
at the beginning of these notes! First, we’ll cut and 
rearrange the gluing diagram for the Möbius strip 
so that the boundary circle is displayed in one 
continuous piece.

 

 

 

Now we can see that the top edge of the triangle is the 
boundary of the Möbius strip, so this makes it easier 
to take two copies of the Möbius strip (in its new 
gluing diagram) and glue them together along their 
boundary circles (the boundary circles are labeled c in 
the diagram below on the left).

Hrmm... This doesn’t quite look like our standard 
diagram for the Klein bottle! Your job in the next 
problem is to figure out how to cut it and rearrange 
the pieces so that it looks like the standard diagram.

Problem 1. Use cutting and regluing techniques to 
show that the gluing square above right represents the 
Klein bottle. Hint: Cut along a diagonal.
 
Problem 2. What surface results from gluing a disk to 
the boundary circle of a Möbius band?
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Problem 3. Which of the following diagrams 
represent equivalent surfaces? (Note that each 
diagram represents its own surface. It is not 
intended that you glue all the a’s together, etc, but 
only the ones on that specific diagram.)

In a 

gluing diagram, we identify the edges of a polygon. 
This means that sometimes, the corners of our 
polygon are not distinct points on the surface it 
represents.

Problem 4. In the standard gluing diagram for the 
torus, all four corners represent the same point in on 
the surface of the torus. Cutting out a disk around 
this point is the same as cutting out the corners in 
the gluing diagram. Paste together the corners 1, 2, 
3, and 4 so they form a disk. Do the same for a Klein 
bottle. What happens for R P2?

Exercise 6. Which corners in the standard square 
diagram for the Klein bottle represent distinct points 
in the surface? What about in the standard square 
for IR P2?

Exercise 7. In each of the following diagrams, 
identify which corners represent the same point and 
which are distinct.
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Problem 5. Since we are topologists, we don’t care 
so much whether lines are straight or curved. We 
could also think about gluing diagrams that result 
from dividing a circle into subsegments (edges) and 
assigning letters and arrows to these edges. Our 
example of the circular world map is a gluing diagram 
for the sphere S2 as a circle divided into two edges. 
Find a similar diagram for RP2.

One way to record the gluing is by writing down a 
word that describes what letters we see when we walk 
around the edges of the gluing diagram. Begin at one 
corner of the diagram and walk around the perimeter 
of the diagram. When we walk along an edge labeled 
with a letter, say a' in the same direction as its 
assigned arrow, we write that letter. If we walk along 
an edge labeled with a letter, say a, but in the opposite 
direction of its assigned arrow, we write down a'. The 
string of letters contains the same information as the 
gluing diagram, so long as we remember the code that 
translates between the words and the gluing diagram.

Exercise 8. Draw the gluing diagrams associated with 
the following words: abab, abca'b'c', aba'b, ba'ba', 
ab'ab, bacc'b'a.

Problem 6. Do any of the words in the previous 
exercise represent the same surface?
 
Problem 7. Consider gluing diagrams for a square that 
glue together pairs of edges. Let’s use the letters a and 
b to denote the pairs of edges. How many are there? 
Hint: To count them, you need to keep track of the letter 
of each edge and also its direction. 

Use the idea above of walking around the edge and 
recording the word you walk along. So, this is really 
a question that asks: how many four-letter words are 
that use the letters a, a', b, b' such that both a and 
b appear exactly twice (where twice means with or 
without the decoration ', e.g. you could have a and 
a, or a and a', or a' and a' in your list, but you cannot 
have a appearing only once or three times).

Now back to our initial question of trying to list all 
surfaces that there are. We might start by trying to 
count the different surfaces represented by these 
gluing diagrams. The number we just arrived at is 
certainly too large. 

For example, if one diagram can be obtained from 
another by rotating it a quarter turn to the right, then 
these must represent the same surface. Similarly, if one 
diagram can be obtained from another by flipping the 
square over, they also must represent the same surface. 
By rotating and flipping our diagrams, we can reduce 
to the case where the left edge of the square is labelled 
with a and the arrow points up.

Problem 8. Now that we’ve determined that we can 
reduce to the case where the left edge of the square is 
labelled with a and with an upward pointing arrow, try 
to make a complete list of gluing diagrams that doesn’t 
have any “obvious” repeats. By “obvious,” I mean there 
isn’t a sequence of rotations and a flip that will take 
one diagram on your list to another. Can you identify 
any of the diagrams as surfaces that we know?
 
Problem 9. Two of our diagrams turn out to represent 
the Klein bottle and two represent the projective plane 
IR P2. Find a way to cut and paste the non-standard 
diagrams of the Klein bottle and IR P2 so that they look 
like the standard ones.

You’ve just made a list of all the surfaces one can 
represent using a square, a lovely accomplishment! 
I hope you have enjoyed this brief journey into the 
twisted world of the topology of surfaces. 

You’re already quite close to having all the tools 
necessary to make a list of all possible surfaces. If 
you’d like to do so, a good jumping off point is to look 
up Classification of Surfaces online or in one of the 
texts referenced below.
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Geometric Probability
and Irrational Numbers
BY KIMBERLY HOU
Kimberly wrote this when she was a high school student at BASIS Independent Silicon Valley. She is currently 

studying mathematics at Princeton.

INTRODUCTION

The fields of geometry and probability seem 
completely different. One focuses on the shape, 

size, and relative positions of figures while the other 
measures the relative likelihood that an event will 
occur. Yet, it is possible to measure a fundamentally 
geometric quantity using probability. 

Pi is defined as the ratio of the circumference of a 
circle to its diameter. In 1777, Georges-Louis Leclerc, 
Comte de Buffon proposed a question that was one 
of the first in the field of geometric probability. 
Buffon’s needle problem asks what the probability 
would be that a randomly thrown needle of length 
l will intersect one of infinitely many parallel lines 
of unit distance apart on a plane. Using the result 
for this problem, it is possible to create a method to 
approximate pi with surprising accuracy. In this paper, 
I will give another proof of this method. 

FORMALIZATION

There are infinitely many horizontal parallel lines 
of unit distance apart on the plane. One will throw 
infinitely many needles of length l (where l < 1) onto 
this plane. I will calculate the probability of a needle 
intersecting any of the lines. 

Below is a list of the variables used in the proof of this 
method:

h: the distance from the lower end of the needle to the 
parallel line immediate above it.

θ: the counter-clockwise angle between the needle and 
the line passing through the lower end of the needle 
and parallel to the parallel lines already on the plane.
 
PROOF

For a given l, whether or not the needle intersects 
a line is dependent on h and θ. For example, if the 
needle is parallel to the lines, it is impossible for it to 
intersect any lines. Yet if the needle is perpendicular 
to the lines, it is far more likely for it to intersect the 
lines. At the same time, if the needle is very short and 
the ends are far away from the parallel lines, it is again 
unlikely for it to intersect. 

Now let’s see how I calculate the probability that the 
needle intersects any of the parallel lines. Referring to 
Figure 1, one can see that the needle intersects a line 
if and only if the projection of the needle along the 
vertical direction (lsinθ) is greater than h, i.e. h ≤ lsinθ. 

Figure 1
Figure 2
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One can see that the possible range for θ is between 
0 and π, and for h is between 0 and 1. This is shown 
in the graph in Figure 2. I denote A to be the region 
below the curve for the function h(θ) = lsinθ where θ 
is between 0 and π. This represents when the needle 
intersects one of the parallel lines. 

The area A, which includes all possible values of h and 
θ such that a needle interests a line, is calculated by 
the integral [1]

The total area of the rectangle, which represents 
the total possible region for h and θ, is π. Hence the 
proportion can be calculated by the following integral

Computing this integral [2] gives the proportion to 
be      . Thus, the probability that a randomly thrown 
needle of length l intersects a line in the plane ruled 
with parallel lines of one unit distance apart is . Pi 
can thus be approximated experimentally using this 
method.

METHOD

Drop many needles of a known length l (where l < 
1) onto a plane with lines one unit apart. Find the 
proportion of needles that intersect a line (as the 
number of needles reach infinity, this proportion will 
be closer to the probability calculated above). Divide 
2l by this proportion to obtain an approximation for 
pi. 

CONCLUSION

Different fields of math are united in the calculation 
of these classical numbers. Although it seems that 
these concepts are all very specialized and limited, 
in actuality, they are interconnected. Pi, an irrational 
number, can be approximated using probability, 
and irrational numbers can also be calculated using 
probability. In an interdisciplinary world, there needs 
to be more flexibility within disciplines. 

FOOTNOTES

[1] The area of the function f(x) over the interval [a,b] 
can be represented by the integral

[2] The steps in solving the integral:
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Unmasking Recurrence Sequences 
 

BY ANTONELLA PERUCCA
Associate Professor in Mathematics and its Didactics, University of Luxembourg

There are many interesting sequences of numbers that 
can be described by the first values (‘initial terms’) and 
by a rule (‘recurrence’).

The Fibonacci sequence

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

starts with the numbers 0 and 1. All other terms can 
be obtained with this simple rule:

 Add the two previous terms.

Indeed, we have 0 + 1 = 1, then 1 + 1 = 2, then
1 + 2 = 3, then 2 + 3 = 5, and so on.

The sequence is a stripe of numbers, and the 
recurrence is a mask!

The recurrence relates neighbouring terms in a 
prescribed way: You always see a true equality when 
the mask goes on the stripe!

The recurrence lets you deduce all terms from the 
initial ones: You can use the mask to compute the 
next term!

Periodic sequences (for example the sequence 0, 1, 
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .) regularly repeat finitely 
many values. The mask looks like this:

Arithmetic sequences (for example the sequence 1, 3, 
5, 7, 9, 11, . . .) require you to add one same number N 
at each step. The mask looks like this:

Geometric sequences (for example the sequence 1, 2, 
4, 8, 16, 32, . . .) require you to multiply by one same 
number N at each step. The mask looks like this:

You can produce stripes and masks out of paper (or 
program a small animation) to try things out!

Q1: Can you find two different masks for the following 
sequence?

Q2: What happens to the Fibonacci sequence if you 
start with the values 1 and 1 instead? And what if you 
start with 0 and 0?

Q3: Which sequence do you get if you change the 
recursion of the Fibonacci sequence by turning the 
addition into a subtraction?

Q4: For periodic/arithmetic/geometric sequences, 
what is the mask to go backwards (i.e. to compute 
previous terms)?

Refer to www.antonellaperucca.net for the solutions
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Introducing Permutation 
Groups via Magic
BY RICARDO TEIXEIRA 

Assistant Professor of Mathematics at the University of Houston

Introduction

World-famous magicians have developed routines 
whose justifications are clever applications of 

mathematics. However, rarely do the explanations get 
proper attention. Here, we propose an innovative way 
of relating Permutation Groups to Magic.

Some Magic Tricks

Some magic tricks involve high-level mathematical 
principles. Let’s illustrate by detailing the explanations 
of a trick performed by a fictitious magician, Gisele.

A volunteer, Arthur, displays three objects in line. After 
performing several permutations(that is, rearranging 
the order of the objects), he mentally chooses an object. 
He realizes some other permutations. And the magician, 
Gisele is able to infer which the chosen object was.

The above trick involves  finding  a  hidden  piece of 
information: the chosen object. Its explanation involves 
permutation groups.

Several fields of mathematics and applied mathematics 
have been related to magic tricks. For instance, 
Rungratgasame et. al. [4] use magic squares as examples 
of vector spaces and other linear algebra concepts. 
Number theory may be used in card tricks: Teixeira 
[6] used numeral systems, and Eisemann [1] applied 
cyclic permutations. More group theory can be seen  
in relation to magic when Graham [2] connected 
semidirect product to card shuffling. Simonson and 
Holm [5]used card tricks to teach discrete mathematics. 

Basic probability is illustrated by Teixeira [8]; and more 
advanced probability theory is taught by Lesser and 
Glickman [3]. Finally, computer algorithms for error 
detection and correction are exemplified in a trick in a 
paper by Teixeira [7].

Groups and Finite Groups

For completion, we use this section to summarize 
concepts we need in our next one.

The trick is based on an algebraic structure called a 
Finite Group. In Abstract Algebra, a college-level course, 
we study more general algebraic structures, than the 
usual number system. The main ones are groups, fields 
and rings.

Simply put, a group is a generalization of the structure 
“integers equipped with addition.”

We extract four main properties of this addition 
structure:

1. Take two integers, add them, then the result is 
also an integer. In mathematical terms: if a and b 
are integers, then a + b is also an integer. 

2. If there are three integers to be added a + b + 
c, then we could initially group the first two 
numbers or the last two numbers that the result 
would be the same. Mathematically: if a, b and c 
are integers, then (a + b) + c = a + (b + c). 

3. Also, under addition there is a number that does 
not modify the other numbers when added: the 
number zero. It is called the “identity:” if a is an 
integer, then a + 0 = a and 0 + a = a. 

4. Finally, for every integer, there is an inverse, that 
is, we could add a number to it such that the 
result is the “identity element,” or in other words, 
the sum is zero. This inverse is called “additive 
inverse.” In symbols: if a is an integer, then there 
is another integer, b, such that a + b = 0, and b 
+ a = 0. The additive inverse of an integer a is 
represented by the symbol “a.” (a multiplicative 
inverse may be represented by a−1.)
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Notice that the commutative property is not required. 
That is, changing the order of elements may also change 
the result, in some groups.

We generalize this structure by defining:

A group is a set of elements G equipped with and 
operation + having the following four properties:

1. Closure: if a and b are elements of G, then a + b 
is also an element of G; 

2. Associativity: if a, b and c are elements of G then 
(a + b) + c = a + (b + c); 

3. Existence of an Identity Element: there is an 
element e such that for all element a of G, a + e 
= e + a = a. 

4. Existence of Inverse: for every element a of G, 
there is an element b of G such that a + b = b + 
a = e.

Some Examples

In order to better understand what a group is, let’s 
discuss some structures composed by a set and an 
operation that are groups and some that do not fulfill 
the definition of group.

For instance, the structure integers equipped with 
multiplication does not fulfill the last property: there 
are integers that do not have a multiplicative inverse. 
For instance, the multiplicative inverse of 3 is 1/3 which 
is not an integer.

Even when we expand the previous example to the set of 
all Real numbers with multiplication still does not fulfill 
all properties, since there is a Real number that does 
not have a multiplicative inverse: zero has no inverse.

We could exclude this single number and consider all 
non-zero Real numbers, equipped with multiplication and 
all properties are now satisfied, with the multiplicative 
identity being the number 1. The group is represented 
by {R*, ×} (in general, the asterisk simply means that 
zero is removed).

Consider the idea of finding what the time of day is 
after few hours. For example, on a 12-hour clock, if it is 
9 o’clock, after 6 hours, what time will it be?

We do this computation a lot in our daily lives. We have 
an example of a finite group. The number 12 is the same 
as our additive 0, since 12 plus any hour is equal to the 
hour itself. So, what is 9 + 6? Starting at 9, after 3 hours 
we reach 12, or zero. So,
after 3 more hours, it will be 3 o'clock.

What is the additive inverse of 4, for instance? It is the 
number from the set such that when added to 4 is equal 
to the additive identity, or zero. In other words, it must 
be 8, since 4 + 8 = 12 = 0.

Mathematically, the group is the set of elements
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} equipped with the 
operation of addition.

We can better understand the group by checking its 
table of addition:

And the additive inverse values are: 
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So, following the convention to call the additive inverse 
of a number as its negative, it makes sense to say that 
-4 = 8, for example. Which in the clock case means 
that if the hour hand is at a certain time, then going 8 
hours forward (clockwise direction) or going 4 hours 
backwards (counter-clockwise direction) the final 
position will be the same.

Another example of a very familiar finite group is the 
days of the week. If today is Wednesday, which day of 
the week will be in 16 days? In this case we are dealing 
with a group of 7 elements:

So, if today is Wednesday, or 3, so in 16 days it will 
be 3 + 16 = 19 = 5, which means that it will be Friday. 
We notice that we need to remove multiples of 7 in this 
case. So 19 will be 19 − 7 − 7 = 5.

These groups are sometimes called (Zn, +) or simply 
Zn, where n is the number of elements. It is simply the 
remainder of the division by n: in Z7, 89 = 5, since 89 = 
7 x 12 + 5. In other words, if today is Monday (1), in 89 
days it will be 1 + 89 = 1 + 5 = 6, Saturday.

Multiples
 
Consider for a moment the “clock”-group Z12. Let’s see 
which the multiples of some elements are. For example, 
if we want to see the multiples of 4: The first multiple 
is 4 x 0 = 0, then 4 x 1 = 4, then 4 x 2 = 8, but see what 
happens on the next multiple: 4 x 3 = 12 = 0. If  we  
continue,  4 x 4 = 16 = 4, 4 x 5 = 20 = 8, 46 = 24 = 0. We 
notice that we will be stuck on the values {0, 4, 8}.

However, the multiples of 5 behave differently, they are 
not a mere subset of the group, they are the entire group. 
The multiples of 7 would also include all elements of 
the group.

A natural question that arises is: What if the group is 
Z13, will any set of multiples be different from Z13? Why 
or why not?

Permutations 

If there are n objects lined up in a certain order, and 
someone rearranges them in some new order, we say 
that this person is creating a new permutation of the 
objects.

For instance, suppose there are five objects: A, B, C, 
D, and E. First they are lined up in alphabetical order: 
ABCDE. Someone messes up the order and create a 
new permutation CDBEA. We notice that A was in the 
first position and was sent to the fifth position. The fifth 
position used to be E which was sent to position four. 
Position four was letter D which was sent to position 
two. Position two was the place for the letter B which 
now has position three. Finally, position three had letter 
C, but after the rearrangement became in position one. 
Hence, the transformation can be summarized as:

1 → 5, 5 → 4, 4 → 2, 2 → 3, 3 → 1

Permutations will be described inside parentheses as: 
start with the first position that is not kept intact, then 
write the position to which the object was sent. Then 
continue by enumerating, in order, the new positions of 
the objects in the previous position. When an object is 
sent to the initial position, simply close the parentheses. 
If there are less than 10 positions, we do not separate 
the numbers. In our example, the permutation can be 
simply represented by (15423). 

How would we represent the transformation ABCDE → 
DCBEA?

Notice that 1 → 5, 5 → 4, 4 → 1, 2 → 3, 3 → 2. So apparently 
there are two independent permutations (154) and 
(23). So we represent this second transformation as 
(154)(23).

Similarly, the transformation ABCDE → DBCEA is
(154) and the two elements did not change positions, 
two and three do not need to be written.

Consider any permutation described above. By reverting 
the arrows, we create its “inverse.” For example, what is 
the inverse of (154)? We need 5 → 1, 4 → 5 and 1 → 4. 
Hence (154)−1 = (145). Similarly, (23)−1 = (23).

Can we combine permutations? What if you have the
following instructions:

• Realize the first permutation (15423); 

• Then, realize the second one (154)(23). 

What would the result be?

Notice that the permutations are about the positions 
and not the elements. We can track each element:
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• Letter A goes from position one to position five 
in the first permutation, then from position five 
to position four. So we start by putting (14 _ _ _ ). 

• Now we track what happens to the element 
that was in position four, letter D. It goes from 
four to two, and then from two to three. So, our 
transformation becomes (1 4 3 _ _ ). 

• Position three’s element goes from three to one, 
then from one to five: (1 4 3 5 _ ). 

• Letter E goes from five to four, and from four to 
one. So we close the cycle: (1 4 3 5). 

• Finally, B goes from two to three, then from three 
to two. So it does not change its position, so we 
don’t need to represent.

The combination of permutations acts like an operation 
on a group:

1. Closure:  when permutations are combined, the 
result is just another permutation. 

2. Associativity: if  there  are  three  permutations 
p1, p2, and p3 to be realized in order (first p1, then 
p2 and then p3), we could see the result of first 
combining p1 and p2 and then realizing p3 and 
the result would be the same as combining p2 and 
then p3 and make the combination of first p1 then 
the result of p2 and p3. (Exercise) 

3. Existence of an Identity Element: there is an 
element (1) which fixes every position such that 
for all permutation, if we combine with (1) then 
the permutation is not affected. 

4. Existence of Inverse: for every permutation, 
we can find its inverse by simply undoing the 
commands.

We follow the usual notation, where the first 
permutation is on the right, and then we go left. For 
instance, the description above can be summarized as:

[(154)(23)](15423) = (1435)

In the trick mentioned earlier, objects simply change 
positions within themselves, that is, the volunteer is 
performing permutations.

Mentalism: Guessing an Object

For this trick, three different objects will be needed. 
They could be, for instance, paper ball, pen, eraser, 
ring, earring, key, die, a card, etc.

The magician lays the objects on a flat surface and 
name each position from left to right as 1, 2, and 3. For 
simplicity, use the volunteer’s point of view.

Suppose, for example, that the objects are an arrow, a 
ball, and a cookie, and that they are displayed in this 
order: ABC.

1. According to the volunteer’s (Arthur) point of 
view, Gisele lays from left to right: Arrow, Ball, 
and Cookie. 

2. She explains that Arthur can realize permutations 
of only two objects at a time. 

3. Gisele asks Arthur to mentally select an object, 
this will be used later. 

4. The magician turns her back to the objects. 

5. Arthur is free to make as many permutations as 
he wants. He simply says loudly the positions he 
is exchanging, not the objects. For example, “two 
and three.” 

6. Once he is satisfied with the permutation in front 
of him, he lets Gisele know. At that point, Gisele 
gives a special instruction: 
- Now, do not tell me the positions you are 
switching, remember your chosen object and 
simply switch the positions of the other two 
objects. 

7. Then Arthur can make more permutations, and, 
as before, he says the positions he is exchanging. 

8. Once Arthur is satisfied with the result, he asks 
Gisele to turn back, and Gisele can say which 
object Arthur chose.

Trick: Gisele knows the initial configuration, so she 
knows, for instance, the position that the arrow is in 
the beginning. She will be mentally tracking this object 
as if that special move (step 6) never happens. There are 
two possibilities:
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• The arrow is indeed in the position that she 
tracked: the chosen object was the arrow. 

• The position in which she expected the arrow to 
be is not occupied by the arrow, then the chosen 
object is not the arrow, nor the object on that 
position. It is the remaining one.

Explanation: If the arrow is in the position she tracked, 
then that means that the special move did not affect the 
arrow, only the ball and the cookie. That means that the 
arrow was the chosen one.

If, say, the cookie is where the arrow was expected to 
be, that means that at that special move, arrow and 
cookie switched places. Which means that the ball was 
the chosen object.

Example: For example, suppose that Arthur says in 
order “1 and 2”, “2 and 3”, “1 and 2”, “2 and 3”. The result 
is (23)(12)(23)(12) = (123). But Gisele only needs to 
know that 1 → 2.  That is, Gisele knows that  the arrow 
is on position two.

When the special move comes, Arthur realizes either 
(12) if the chosen object is on position three (if the ball 
is the chosen object), (23) if the chosen object is on 
position one (the cookie), or (13) (the chosen object 
is on position two (arrow). The results could be either:

• (12)(123) = (23) (arrow changed places with the 
object in position three, the chosen object is in 
position one). The arrow is not the chosen object, 
and Gisele is now tracking another not-chosen 
object; 

• (23)(123) = (13) (arrow did not change position). 
Gisele continues to track the arrow, and the 
arrow is the chosen object; 

• (13)(123) = (12) (arrow changed position with 
the object in position one, the chosen object is 
in position three), The arrow is not the chosen 
object, and Gisele is now tracking another not-
chosen object.

Differently from some other  tricks,  this  one  can be 
repeated several times, with different objects, if desired.

Final Remarks
 
With this work, a possibility of presenting permutation 
group via a magic trick is introduced. 

We were also able to reveal magic secrets in a rigorous 
mathematical language.
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WHY IS            IRRATIONAL? 
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Adam Greenberg: Raytheon Corporation, El Segundo, California

Introduction

This is a story of how we came to truly understand the irrationality of     . The story stretches over several 
decades, and involves detours into different number bases. We believe that the proof we finally reached is 

both more fundamental and more intuitive than the proof usually taught in school [1].  We hope readers will 
gain some new insights from this account, as well as enjoying our meandering journey to reach our conclusion.

Standard Proof (Proof 1)

The story begins when the first author was in 7th grade and learned what we call Proof 1: 

Assume      can be written as a fraction      reduced to lowest terms, where p and q are integers.  Since 
 
     =     , it follows that          =2, and therefore 

p2 = 2q2                 (1)
    

From (1), p2  is even, which means that p itself is even (since odd times odd equals odd).  So p can be 
written as 2n, where n is an integer, and thus, p2 = 4n2; that is, p2 not only is an even number but is 
actually divisible by 4. Rewrite (1) as 4n2 = 2q2, implying q2 = 2n , i.e.,  q2 is even as well, and thus so 
is q.  Thus p and q are both even, which violates the opening assumption that      had been reduced to 
lowest terms.  This is a contradiction; therefore        cannot be written as a fraction     . QED

The first author found this standard proof singularly unsatisfying. It proves that you can’t reduce       to “lowest 
terms,” but it doesn’t really explain why       can’t be written as a rational number. It left her wondering, “What if 
we didn’t assume      had been reduced to its lowest terms?  What does that have to do with the square root of 2?”

Proof by Rightmost Digit (Proof 2) 
 
Many years later, the second author was in 7th grade and had a similar reaction.  He thought he had a simpler, 
more obvious proof:  “We know      is between 1 and 2, so expressed in decimal form it will be written as 1 point 
something.  Consider a decimal such as, e.g., 1.4. Since its rightmost digit is 4, when squared it must end with 
a 6 in the rightmost position after the decimal point.  I.e., it cannot have all zeroes after the decimal point, and 
thus cannot equal exactly 2.  Similarly for all other nonzero rightmost digits (4 and 6 squared yield 6; 1 and 9 
squared yield 1, etc.). So any decimal number between 1 and 2, when squared, cannot end up with all zeroes to 
the right of the decimal point and therefore cannot equal 2.0.”  This was Proof 2, Proof by Rightmost Digit.  
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The first author was struck by this insight but pointed out that the rightmost-digit reasoning can be applied 
only to fractions that “terminate”  when in decimal form (e.g.     = .6), not to “repeating” decimals, such as 
                      since they do not actually have a rightmost digit. (A repeating decimal is one whose digits are 
periodic, with the infinitely repeated portion not equaling zero.)  Even if the repeating figure consists of only 
one digit, e.g.,                   , there is still no rightmost digit.  (And of course, irrational numbers also have no 
rightmost digit.)  Thus, the Proof by Rightmost Digit works for terminating decimals but not for repeating ones.

Detour: Terminating vs. Repeating Decimals

Several years went by.  The first author kept mulling over this on the back burner.  What is the difference 
between terminating and repeating decimals, anyway?  She thought about unit fractions (fractions of the form    
where n is an integer).  Some unit fractions, such as 1/16 and 1/200, convert into terminating decimals (.0625, 
.005, etc.), whereas others, such as 1/7 and 1/11, have decimal equivalents that go on forever.  Terminating 
decimals are easier to write, and also easier to work with (for example, to multiply). We call an integer n 
“friendly” if its unit fraction      is terminating, and “unfriendly” if        is repeating.  

What determines whether a given integer is friendly or unfriendly?  The answer is that  n = 2p5q  (with p and 
q both nonnegative integers, at least one > 0) is a necessary and sufficient condition for n to be friendly. Why 
those two integers, 2 and 5, as opposed to, say, 2 and 3?  It’s because they are factors of ten, the base we write 
our numbers in.  If we wrote our numbers in base twelve, 2 and 3 would be friendly, and 5 would be unfriendly.  
Or consider 7, which is unfriendly in base ten (     = .142857142857...).  But in base seven, seven is written as 
10, and one-seventh is written as 1/10, for which the decimal form is 0.1 (terminating). In fact, any integer q is 
friendly when written in base q,  where it will appear as 0.1. 

In other words, whether a given fraction is terminating or repeating is not inherent, but rather depends only 
on what base we choose to write in.  After all, the numbers themselves have an absolute meaning, but the base 
system is just a “bookkeeping” method.  The number we call “twelve” may be written “12” (base ten), “15” (base 
seven), or “C” (base sixteen), but whichever way we write it, it always represents this many: ||||| ||||| ||. 

Proof by Rightmost Digit Revised (Proof 3)

End of detour and back to our story.  As we saw, Proof 2 was valid for terminating decimals but could not be 
applied to numbers in repeating decimal form.  However, we now knew, from the detour, that any fraction 
can be expressed as a terminating decimal, if we choose an appropriate base to write it in. Specifically, for any 
given rational fraction between 1 and 2, say            , which is a candidate to equal      , it is possible to find a base 
system in which T can be expressed in terminating decimal form, and such that T 2 has at least one nonzero 
digit to the right of the decimal point.  (This statement can be justified rigorously; details not included here.) 
Therefore, since T 2 cannot equal an integer; T cannot equal     ; and 2 does not have a rational square root. 

And since the base represents only a bookkeeping method, it suffices to find one base in which our candidate T 
does not yield 2 when squared.  If T 2 doesn’t equal 2 in base b, it doesn’t equal 2 in any base.
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Back to Fractions (Proof 4)

With Proof 3, we had accomplished our goal of creating a more satisfying proof of the irrationality of       than 
the one we had learned in 7th grade – a proof immediately showing exactly why a rational number between 
1 and 2, when squared, cannot equal an integer.  Moreover, in the process, we had learned things about 
terminating and repeating decimals and about the role of different base systems.

However, Proof 3 is not elegant, and its relative clunkiness lurked in the backs of our minds. The “rightmost 
digit” argument was a useful tool, a means to reach an end.  But the more fundamental insight is that if a 
rational number has any nonzero digits to the right of the decimal point, then the square of that number must 
also have at least one nonzero digit to the right of the decimal point.  Or, even more simply:  If a rational 
number is not an integer, then its square cannot be an integer, either.

It turns out that it is much more elegant to show this result by returning to fractions, written as one integer over 
another integer, rather than numbers in decimal form. But first, an exercise:

Let us try to create a fraction that, when squared, equals 2. “How hard could it be?”  First attempt is 
7/5.  Does that equal  ?  No, because (7/5)2 = 49/25 = 1.96 – a little too small. Increment that by a 
couple of hundredths: (142/100)2 = 2.0164 – a little too large.  Continue like this, e.g., (1,414/1,000)2 = 
1.999396 and (1,415/1,000)2 = 2.002225, but we will always under- or over-shoot.  This exercise can help 
us understand why the ancient Greeks were puzzled and frustrated by the concept of irrationality.

Why can we not eventually converge to a fraction that, when squared, will equal 2? Look again at the first  
guess,    .  It is not an integer, because 5 does not go evenly into 7. When we square      we get           .  Since 
5 does not go evenly into 7, 5 x 5 also does not go evenly into 7 x 7,  and therefore (7 x 7)/(5 x 5) is also 
nonintegral.  This is why squaring a rational noninteger yields another rational noninteger.  Or in simpler terms:  
A nonintegral fraction times itself equals another nonintegral fraction.

More formally: Consider any nonintegral fraction [2], with the numerator and denominator each broken 
down into its unique prime factorization, e.g., T =                   .  (It does not matter if some of the primes in the 
numerator equal some of those in the denominator; i.e., the fraction need not be reduced to lowest terms; cf. 
Proof 1.)  The denominator contains at least one prime factor (call it s) at a higher power than in the numerator. 
Say the numerator of T contains sn, and the denominator, sm, with 0≤n<m. The squared fraction has s2n in the 
numerator and s2m in the denominator. Since 2n < 2 m, this squared fraction is also nonintegral. (Note that 
unique factorization is critical for this argument also, in order to ensure that squaring T does not introduce 
additional s factors to the numerator, such that the numerator would contain sk, with k ≥ 2m.) [3] This argument 
proves:
 

Lemma. Any nonintegral fraction, when squared, equals another nonintegral fraction.

That is, an integer squared equals an integer, whereas a nonintegral fraction squared equals a nonintegral 
fraction.  (Among rational numbers, the set of integers and the set of nonintegral fractions are each closed 
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under squaring.)  
Thus there are only two possibilities for square roots of integers n:  Either n is a “perfect square” (1, 4, 9, etc.), 
in which case its square root is an integer, or n is not a perfect square, in which case its square root, which falls 
between two integers, cannot be a fraction (by the Lemma) and therefore is not rational. Since 2 is not a perfect 
square, its square root is not rational. QED.

Concluding Remarks

To summarize, we went through four stages. We were dissatisfied with the standard proof (Proof 1) taught to 
us in 7th grade, which depended on a clever trick but did not convey the essence of why the square root of 2 is 
not rational (cannot be written as a fraction). Our first insight concerned the “rightmost digit” (Proof 2). This 
insight was good as far as it went, but applied only to terminating fractions, not repeating ones. We solved that 
problem by working with different base number systems, along with the realization that the base system is only 
a bookkeeping device and does not affect the actual meaning of the number (Proof 3). And finally we came 
to the most fundamental insight, which was actually the foundation for Proof 2, although we did not realize 
it originally – namely, that if a number is a nonintegral fraction, then its square is also a nonintegral fraction.  
Therefore, for any integer that is not a perfect square, its square root is irrational (Proof 4). 

As a final exercise, we revisit Proof 1. Start the same as before, i.e., assume that     is the square root of 2, so 
equation (1) holds. But then instead of stipulating that p/q is reduced to lowest terms, apply the insight of Proof 
4:  Since      is not an integer (since it falls between 1 and 2), there must exist at least one prime factor (call it s), 
occurring at higher power (n) in q than its power (m) in p.  This means that the right side of (1) includes s2n, as 
opposed to s2m on the LHS. It is impossible for an equation to have a prime factor at a higher power on one side 
than on the other.  Therefore,      cannot be the square root of 2.  QED.  There is no need to reduce       to lowest 
terms or to go through the convoluted steps in Proof 1.

In this piece we try to offer some insight into ways of thinking about fractions and, in particular, an appreciation 
of the fundamental fact that, if the denominator does not go evenly into the numerator, then the denominator 
squared does not go evenly into the numerator squared.  That is the crux of why        is irrational. 

Footnotes

[1] Our final proof is not original to us, although we did not know that at the time. See, e.g., Wikipedia, “Square 
root of 2 [https://en.wikipedia.org/wiki/ Square_root_of_2#Proofs_of_irrationality].”

[2] A fraction is nonintegral if and only if the denominator contains at least one prime factor at higher power 
than in the numerator (zero is also a power). Note that this definition depends critically on the unique prime 
factorization of the Fundamental Theorem of Arithmetic.  For if, say, 6 had two distinct prime factorizations, 
e.g., 6 = p1p2 and also 6 = q1q2, with p1, p2, q1, and q2 all distinct and prime, then the fraction 3p1p2/(q1q2) 
would satisfy the above condition but would not be nonintegral.

[3] Given a composite number                         , in standard prime   factorization. Consider A2, which can 
be found by squaring each component of the prime factorization of A, i.e.,                            .  By unique 
factorization, an alternative prime factorization – one that would contain another prime, say, q – does not exist.  
This proves that squaring a composite number cannot introduce any new primes.
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Issue 21 - Spring 20192019 MATH QUICKIES
Solutions will be published in the next issue of PI IN THE SKY

1 You start from the triple (a1, a2, a3) = (2, 3, 10), and can perform the following operations: choose 
two numbers ai and aj, i ≠ j and a number θ; you then replace them by aicosθ + ajsinθ and aisinθ − 
ajcosθ. Is it possible to obtain the triple (5, 9, 2) by repeatedly applying operations of this type   

            (where each time, you can choose which i and j to modify, and you can choose the number θ)?

2 Show that the equation 15x2 + y2 = 4n has positive integer solutions for any integer n ≥ 2.

3 Is it possible to partition a square into a number of congruent right triangles having an angle of 
30°? Justify your answer.
 

4 Let A be a set of n integers. Prove that there exists a non-empty subset of A such that the sum of 
its elements is divisible by n.

5 Let P(x) be a polynomial with integer coefficients, such that P(2018) • P(2019) = 2021. Show that 
there is no              such that P(k) = 2020.

6 Let a0, a1, ··· , an,  ···  be a sequence of real numbers such that an + 1 ≥                n ≥ 0. Prove that  
                               

, for any n ≥ 4.

7 The convex quadrilateral ABCD is inscribed in a circle of centre O and its diagonals intersect at 
E. The projections of E on AB, BC, CD, and DA are the points M, N, P, and respectively Q. Prove 
that the area of MNPQ is half the area of ABCD if and only if ABCD is a rectangle.

PRIZE!
PIMS is sponsoring a prize of $100 to the first high school student (from within the PIMS operating region: 
Alberta; British Columbia; Manitoba; Saskatchewan; Oregon; Washington) who submits the larges number of 
correct answers before December 1, 2019. Submit your answers to: pims@uvic.ca
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