

Lethbridge Number Theory and Combinatorics Seminar

 Wednesday
 — January 27, 2016

 Room: C630

 Time:
 10:00 to 10:50 a.m.

Francesco Pappalardi Università Roma Tre

The Distribution of Multiplicatively Dependent Vectors

Abstract: Let n be a positive integer, G be a group and let $\nu = (\nu_1, \ldots, \nu_n)$ be in G^n . We say that ν is a multiplicatively dependent n-tuple if there is a non-zero vector (k_1, \ldots, k_n) in \mathbb{Z}^n for which $\nu_1^{k_1} \cdots \nu_n^{k_n} = 1$.

Given a finite extension K of \mathbb{Q} , we denote by $M_{n,K}(H)$ the number of multiplicatively dependent n-tuples of algebraic integers of K^* of naive height at most H and we denote by $M_{n,K}^*(H)$ the number of multiplicatively dependent n-tuples of algebraic numbers of K^* of height at most H. In this seminar we discuss several estimates and asymptotic formulas for $M_{n,K}(H)$ and for $M_{n,K}^*(H)$ as $H \to \infty$.

For each ν in $(K^*)^n$ we define m, the *multiplicative rank of* ν , in the following way. If ν has a coordinate which is a root of unity we put m = 1. Otherwise let m be the largest integer with $2 \le m \le n+1$ for which every set of m-1 of the coordinates of ν is a multiplicatively independent set.

We also consider the sets $M_{n,K,m}(H)$ and $M_{n,K,m}^*(H)$ defined as the number of multiplicatively dependent *n*-tuples of multiplicative rank *m* whose coordinates are algebraic integers from K^* , respectively algebraic numbers from K^* , of naive height at most *H* and will consider similar questions for them.

EVERYONE IS WELCOME!

Visit the seminar web page at http://www.cs.uleth.ca/~nathanng/ntcoseminar/

