Open questions on Jacobians of curves over finite fields: *p*-ranks of curves

Rachel Pries

Colorado State University pries@math.colostate.edu

Effective methods for abelian varieties June 16-18, 2016

Rachel Pries (CSU)

Supersingular curves

Open questions on *p*-ranks of curves

Let p be a prime number. Let g be a natural number. Let X be a curve defined over a finite field of characteristic p.

Open question B1:

If X is a generic curve of genus g and p-rank 0, what is the Newton polygon of X?

Open question B2:

What are the *p*-ranks of curves *X* which are a cyclic \mathbb{Z}/ℓ cover of the projective line?

Outline. Definition of *p*-rank; B0: how to compute *p*-rank with Cartier operator; a generic Newton polygon, *p*-ranks of cyclic covers of the projective line

Rachel Pries (CSU)

Supersingular curves

The *p*-rank measures the number of *p*-torsion points on the Jacobian or the number of roots of the *L*-polynomial with *p*-adic absolute value 1.

Fact/Def: Let X be a smooth k-curve of genus g

Then $|J_X[p](k)| = p^f$ for some integer $0 \le f \le g$ called the *p*-rank of *X*.

Also, $f = \dim_{\mathbb{F}_p} \operatorname{Hom}(\mu_p, J_X[p])$ where $\mu_p \simeq \operatorname{Spec}(k[x]/(x^p - 1))$ is the kernel of Frobenius on \mathbb{G}_m .

Let L(t) be the *L*-polynomial of the zeta function of an \mathbb{F}_q -curve *X*.

The *p*-rank of *X* is the length of the slope 0 portion of NP(X).

X is supersingular if all slopes of NP(X) equal 1/2. X supersingular implies X has p-rank 0 but converse false for $g \ge 3$.

(日)

The moduli space \mathcal{A}_g of p.p. abelian varieties of dimension g has dimension $\dim(\mathcal{A}_g) = g(g+1)/2$.

The *p*-rank 0 stratum of \mathcal{A}_g is irreducible of dimension g(g-1)/2 (codimension *g*).

The supersingular locus of \mathcal{A}_g has dimension $\lfloor \frac{g^2}{4} \rfloor$ (number of components is a class number).

For $g \ge 3$, the dimension of the *p*-rank 0 strata is strictly bigger than the dimension of the supersingular strata.

Computing the *p*-rank

Let *C* be the Cartier (semi-linear) operator on $H^0(X, \Omega^1)$.

Manin: the *p*-rank is $f = \dim(\operatorname{Im}(C^g))$. Thus: one can compute *f*, given *p*, *X*, and a basis of $H^0(X, \Omega^1)$.

Sage: compute the Cartier matrix, Hasse-Witt matrix, *p*-rank and *a*-number for hyperelliptic curve $X : y^2 = h(x)$ with deg(h(x)) = 2g + 1.

$$P. < x >= PolynomialRing(GF(67))$$

 $X = HyperellipticCurve(x7 + x3 + x)$
 $X.p_rank()$
2

The algorithm is a generalization of this fact for g = 1: Let h(x) be separable cubic polynomial. $E: y^2 = h(x)$ has *p*-rank 0 iff the coeff of x^{p-1} in $h(x)^{(p-1)/2}$ is 0.

ヘロト 不得 トイヨト イヨト 二日

Computing the *p*-rank of hyperelliptic curves

Let *p* odd and $h(x) \in k[x]$ degree 2g + 1 with no repeated roots.

Hyp. curve $X : y^2 = h(x)$: basis for $H^0(X, \Omega^1)$ is $\{\frac{dx}{v}, \frac{xdx}{v}, \dots, \frac{x^{g-1}dx}{v}\}$.

Let c_r be the coefficient of x^r in the expansion of $h(x)^{(p-1)/2}$.

For $1 \le t \le g$, consider the $g \times g$ matrix M_t s.t. $M_t(i,j) = c_{pi-j}^{p^{t-1}}$.

Yui:

The action of the Cartier operator on $H^0(X, \Omega^1)$ wrt this basis is M_1 . X is ordinary (f = g) if and only if $det(M_1) \neq 0$.

The *p*-rank of *X* is $f = \operatorname{rank}(M)$ where $M = M_g M_{g-1} \cdots M_2 M_1$.

B0: Need to fix! Achter/Howe found pervasive typo in literature (Yui, Zarhin, ...) Sage computes $M = M_1 M_2 \cdots M_g$:

Rachel Pries (CSU)

Example - Hermitian curve $X : y^q + y = x^{q+1}, q = p^n$

The Cartier operator *C* acts on $H^0(X_q, \Omega^1)$.

Let
$$\Delta = \{(i,j) \mid i,j \in \mathbb{Z}, i,j \ge 0, i+j \le q-2\}.$$

A basis for $H^0(X_q, \Omega^1)$ is $B = \{\omega_{i,j} := x^i y^j dx \mid (i,j) \in \Delta\}.$

Write $i = i_0 + pi_n^T$ and $j = j_0 + pj_n^T$ with $0 \le i_0, j_0 \le p - 1$.

$$C(x^{i}y^{j}dx) = x^{i_{n}^{T}}y^{j_{n}^{T}}C\left(x^{i_{0}}(x^{q+1}-y^{q})^{j_{0}}dx\right)$$

= $x^{i_{n}^{T}}y^{j_{n}^{T}}\sum_{l=0}^{j_{0}}\binom{j_{0}}{l}(-1)^{l}x^{p^{n-1}(j_{0}-l)}y^{p^{n-1}l}C\left(x^{i_{0}+j_{0}-l}dx\right).$

 $C(x^k dx) \neq 0$ iff $k \equiv -1 \mod p$. Need $i_0 + j_0 - \ell \equiv -1 \mod p$.

If $i_0 + j_0 , then <math>C(\omega_{i,j}) = 0$. If $i_0 + j_0 \ge p - 1$, then $C(\omega_{i,j}) = \omega_{p^{n-1}(p-1-i_0)+i_n^T, p_{j_0}^{n-1}(i_0+j_0-(p-1))+j_n^T}$.

Existence of curves with given genus and *p*-rank

The algorithm can be used to compute the *p*-rank of a fixed curve, but it is too complicated to be algebraically constructive. Let $g \in \mathbb{N}$, $0 \le f \le g$ and *p* prime.

Let \mathcal{M}_{g}^{f} (resp. \mathcal{H}_{g}^{f}) denote the *p*-rank *f* strata of the moduli space of (hyperelliptic) curves of genus *g*.

Theorem: Faber/Van der Geer

Every component of \mathcal{M}_{g}^{f} has dimension 2g-3+f.

Theorem: Glass/P (*p* odd), P/Zhu (*p* even)

Every component of \mathcal{H}_{g}^{f} has dimension g - 1 + f.

There exists a smooth (hyp.) curve over $\overline{\mathbb{F}}_{p}$ with genus g and p-rank f.

In most cases, it is not known whether \mathcal{M}_{a}^{f} and \mathcal{H}_{a}^{f} are irreducible.

Let A be the generic p.p. abelian variety of dimension g and p-rank 0.

TFAE and true for A:

- * the Newton polygon is $G_{1,g-1} \oplus G_{g-1,1}$ (slopes $\frac{1}{g}$ and $\frac{g-1}{g}$);
- * the rank of the Cartier operator on $H^0(A, \Omega^1)$ is g-1,
- * the *a*-number of *A* is 1.

B1 Open problem. For all p and g,

(1) are conditions * true for a generic curve of genus *g* and *p*-rank 0?(2) does there exist a curve of genus *g* and *p*-rank 0 satisfying *?

(1) Yes: g = 1,2,3 for all p. (2) Yes: g = 1,2,3,4 for all p.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Existence of slopes 1/4 and 3/4

For all p, there exists a smooth curve of genus 4 defined over $\overline{\mathbb{F}}_p$ whose NP has slopes 1/4 and 3/4.

Let \mathcal{W} be moduli space of p.p. abelian 4-folds with action by $\mathbb{Z}[\zeta_3]$ of signature (3,1). Then dim(\mathcal{W}) = 3.

Also \mathcal{W} is irreducible since $\mathbb{Z}[\zeta_3]$ has class number 1.

Let *S* be moduli space of curves $C_f : y^3 = f(x)$ (square-free f(x) degree 6). Then dim(*S*) = 3.

The image of Torelli morphism on S is open, dense subspace of \mathcal{W} .

There exists a point of \mathcal{W} representing abelian variety with slopes 1/4 and 3/4. Mantovan 2004 if *p* splits in $\mathbb{Q}(\zeta_3)$, Bültel/Wedhorn 06 if *p* inert in $\mathbb{Q}(\zeta_3)$, SAGE if *p* = 3.

-

イロト イポト イヨト イヨト

Proof: inductive strategy, reduce to p-rank f = 0

Let v_r be a NP type with *p*-rank 0 occurring in dimension *r*.

Let $c_r = \operatorname{codim}(\mathcal{A}_g[v_r], \mathcal{A}_g)$.

For $g \ge r$, let v_g be the NP type with *p*-rank g - r 'containing' v_r

$$(v_g = (G_{0,1} \oplus G_{1,0})^{g-r} \oplus v_r)$$
, add $g - r$ slopes of 0,1.

Proposition P

If there exists a component S_r of $\mathcal{M}_r[v_r]$ s.t. $\operatorname{codim}(S_r, \mathcal{M}_r) = c_r$, then, for all $g \ge r$, there exists a component S_g of $\mathcal{M}_g[v_g]$ s.t. $\operatorname{codim}(S_g, \mathcal{M}_g) = c_r$.

Newton polygon results for f = g - 3 and f = g - 4

Recall
$$v_{g,f} = f(G_{0,1} + G_{1,0}) + (G_{1,g-f-1} + G_{g-f-1,1}).$$

Application - Achter/P. Let $g \ge 3$ and f = g - 3.

The generic point of any component of \mathcal{M}_{g}^{g-3} has Newton polygon $v_{g,g-3}$ (slopes $0, \frac{1}{3}, \frac{2}{3}, 1$).

Application - Achter/P. Let $g \ge 4$ and f = g - 4.

The generic point of *at least one* component of \mathcal{M}_{g}^{f} has Newton polygon $v_{g,g-4}$ (slopes $0, \frac{1}{4}, \frac{3}{4}, 1$).

Note: When g = 4, there is *at most one* component of \mathcal{M}_4^0 whose generic NP is not $v_{4,0}$. If so, the NP has slopes $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$.

イロト イポト イヨト イヨト 二日

A generic Newton polygon

If
$$f = g$$
, the NP is $g(G_{0,1} + G_{1,0})$ (slopes 0, 1).
If $f = g - 1$, the NP is $(g - 1)(G_{0,1} + G_{1,0}) + G_{1,1}$ (slopes $0, \frac{1}{2}, 1$).
If $f = g - 2$, the NP is $(g - 2)(G_{0,1} + G_{1,0}) + 2G_{1,1}$ (slopes $0, \frac{1}{2}, 1$)

If $0 \le f \le g-3$, let $v_{g,f} = f(G_{0,1} + G_{1,0}) + (G_{1,g-f-1} + G_{g-f-1,1})$, (slopes 0, 1 with mult. *f* and $\frac{1}{g-f}, \frac{g-f-1}{g-f}$ with mult. g-f. Note that $v_{g,f}$ is the most generic Newton polygon with *p*-rank *f*.

Conjecture: let $g \ge 3$ and $0 \le f \le g - 3$

The generic point of any component of \mathcal{M}_q^f has Newton polygon $v_{g,f}$.

Rachel Pries (CSU)

B1 Problem: hyperelliptic g = 3, $\operatorname{codim}(\mathcal{H}_3, \mathcal{A}_3) = 1$

Problem: Let p odd and X a hyp. curve of genus g = 3.

If X generic p-rank 0, does Cartier matrix on $H^0(X, \Omega^1)$ have rank 2?

$$X: y^2 = h(x)$$
 with $h(x) = x^7 + ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + x$.
Finite-to-1 map $\mathbb{A}^5_k - \Delta \rightarrow \mathcal{H}_3$ taking (a, b, c, d, e) to X .

The condition $M_2M_1M_0 = [0]$ true for dim 2 subspace in (a, b, c, d, e). For each component, does M_0 generically have rank 2?

Elkin/P: yes when p = 3, 5. If p = 3, Cartier operator has matrix

$$M_1 = \left[\begin{array}{rrr} e & 1 & 0 \\ b & c & d \\ 0 & 1 & a \end{array} \right]$$

If $r \le 1$, then e = b = d = a = 0, and X singular. So r = 2 if f = 0.

B2 Open question about *p*-ranks of cyclic covers

Question: Let $\ell \neq p$ odd prime.

Does there exist a \mathbb{Z}/ℓ -cover $Y \to \mathbb{P}^1$ over $\overline{\mathbb{F}}_p$ such that Y is a smooth curve of genus g and p-rank f?

Not always! There are new constraints on *g* and *f*. Equation: $y^{\ell} = \prod_{i=1}^{n} (x - \beta_i)^{a_i}$ where $0 < a_i < \ell$ and $\sum_{i=1}^{n} a_i \equiv 0 \mod \ell$. a_1, \ldots, a_n well-defined up to permutation and sim. mult. by $c \in (\mathbb{Z}/\ell\mathbb{Z})^*$.

Def: Inertia type: $\vec{a} = \{a_1, \ldots, a_n\}$.

Riemann-Hurwitz: $g(Y) = (\ell - 1)(n-2)/2$.

Congruence condition

Let *e* be the order of *p* modulo ℓ . Then *e* divides the *p*-rank *f*.

Rachel Pries (CSU)

Eigenspaces

Let $\tau \in Aut(Y)$ with $\tau(y) = \zeta y$ where ζ is primitive ℓ th root of unity.

Then τ induces a linear transformation of $H^0(Y, \Omega^1)$.

Decompose $H^0(Y, \Omega^1)$ into eigenspaces: $H^0(Y, \Omega^1) = \bigoplus_{i=0}^{\ell-1} \mathcal{L}_i$, where $\mathcal{L}_i = \{ \omega \in H^0(Y, \Omega^1) \mid \tau^*(\omega) = \zeta^i \omega \}.$

Fact: Let
$$d_i = \dim(\mathcal{L}_i)$$
. Then $d_0 = 0$ and $d_i = -1 + \sum_{j=1}^n (\frac{ia_j}{\ell} - \lfloor \frac{ia_j}{\ell} \rfloor)$.

Ex: Let $\ell = 3$. The *signature type* is (r, s) where $r = \dim(\mathcal{L}_1)$ and $s = \dim(\mathcal{L}_1)$. Note r + s = g and $(g - 1)/3 \le r, s \le (2g + 1)/3$. There is a bijection between inertia types and signature types:

$$\#\{a_i = 1\} = 2s - r + 1, \ \#\{a_i = 2\} = 2r - s + 1.$$

Upper bound on *p*-rank

Cartier operator *C* permutes $\{\mathcal{L}_i \mid 1 \leq i \leq \ell - 1\}$ by $C(\zeta^{p_i}\omega) = \zeta^i C(\omega)$ so $C(\mathcal{L}_i) \subset \mathcal{L}_{\sigma(i)}$ where σ is the permutation $i \mapsto p^{-1}i \mod \ell$ of $(\mathbb{Z}/\ell\mathbb{Z})^*$.

Each orbit of $\{\mathcal{L}_i \mid 1 \leq i \leq \ell - 1\}$ under *C* has length *e*, where *e* is the order of *p* modulo ℓ .

Bouw: (dual result to action of F on $H^1(Y, O)$)

The stable rank of *C* on \mathcal{L}_i is bounded by $\min\{\dim(\mathcal{L}_i)\}$ across orbit.

Let
$$B(\vec{a}) = \sum_{\text{orbits } O} e \cdot \min\{\dim(\mathcal{L}_i) \mid i \in O\}.$$

Then $f(Y) \leq B(\vec{a})$ for all \mathbb{Z}/ℓ -covers with inertia type \vec{a} .

The upper bound $B(\vec{a})$ occurs as the *p*-rank for (generic) curve in $\mathcal{T}_{\ell,\vec{a}}$.

Ex: Let $\ell = 3$. Then $B(\vec{a}) = g$ if $p \equiv 1 \mod 3$ and $B(\vec{a}) = 2\min\{r, s\}$ if $p \equiv 2 \mod 3$.

Rachel Pries (CSU)

17/32

Let $g \ge 3$ and let (r, s) be a trielliptic signature for g.

Suppose either:

- $p \equiv 2 \mod 3$ is odd and $0 \le f \le 2\min(r, s)$ is even; or
- 2 $p \equiv 1 \mod 3$ and f = g 2.

Ozman/P/Weir

Then there exists a $\mathbb{Z}/3$ -cover $\phi : Y \to \mathbb{P}^1$ with Y a smooth curve of genus g, trielliptic signature (r, s) and p-rank f.

More generally, $\mathcal{T}_{(r,s)}^{f}$ is non-empty and contains a component *S* with $\dim(S) = \max(r, s) - 1 + f/2$ in case (1) and $\dim(S) = f$ in case (2).

< 日 > < 同 > < 回 > < 回 > < □ > <

Let $\ell \neq p$ be prime.

Restrict to \mathbb{Z}/ℓ -covers of the projective line with 3 branch points. (There are only finitely many of these).

Open question

For $\vec{a} = (a_1, a_2, a_3)$ inertia type for \mathbb{Z}/ℓ , what is the *p*-rank of the \mathbb{Z}/ℓ -cover $Y \to \mathbb{P}^1$ with inertia \vec{a} ?

Can suppose that $a_2 = 1$. Reduce to equation $y^{\ell} = x^{a_1}(x-1)^1 = x^{a_1+1} - x^{a_1}$.

Elkin: formula for Cartier operator on $H^0(X, \Omega^1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: trielliptic g = 4, signature (2,2)

If
$$g = 4$$
 and $\dim(L_1) = \dim(L_2) = 2$:

(Note - Torelli locus has codimension 1 in GU(2,2)).

Write
$$X : y^3 = p_1(x)p_2(x)^2$$
 where $p_1(x) = x(x^2 - 1)$

and $p_2(x) = x^3 + ax^2 + bx + c$ has distinct roots in $k - \{0, \pm 1\}$.

Basis $\{w_{11} = \frac{dx}{y}, w_{12} = \frac{xdx}{y}\}$ and $\{w_{21} = p_1(x)\frac{dx}{y^2}, w_{22} = p_1(x)\frac{xdx}{y^2}\}$. Elkin: action of *C* on basis.

$$C(w_{11}) = f_{1,p-1}(x)w_{21}, \ C(w_{12}) = f_{1,p-2}(x)w_{21},$$
$$C(w_{21}) = f_{2,p-1}(x)w_{11}, \ C(w_{22}) = f_{2,p-2}(x)w_{11}.$$

The *p*-rank of *X* is rank of matrix $M = C^{(p^3)}C^{(p^2)}C^{(p)}C$.

Example: trielliptic g = 4 signature (2,2), p = 5

Curve $X : y^3 = x(x^2 - 1)p_2(x)^2$ where $p_2(x) = x^3 + ax^2 + bx + c$. When p = 5, the Cartier matrix *C* is

$$\begin{bmatrix} 0 & 0 & 4b & 2a+c \\ 0 & 0 & 4c & 2b+3 \\ 4abc+4b^3+3bc^2+2c^2 & a^3+ab+2a+3c & 0 & 0 \\ 2ac^2+2b^2c+c^3 & 3a^2b+2a^2+ac+3b^2+2b & 0 & 0 \end{bmatrix}$$

 $\det(C) = (ab + 2c^2 + 2)^2 \operatorname{disc}(p_2(x)).$

Problem: $M = C^{(125)}C^{(25)}C^{(5)}C$ has 8 non-trivial entries, each a polynomial in 3 variables with 288 monomials, half of degree 208, the other half of degree 416.

Strategy: use resultants, lift solutions.

- A TE N - A TE N

Example: trielliptic g = 4 signature (2,2), p = 5

Ozman/P/Weir: Let p = 5.

The *p*-rank 0 strata of the moduli space $T_{2,2}$ of genus 4 trielliptic curves with signature (2,2) has two components, each rational of dimension 1, each intersecting Δ_2 .

Proof: Show $V = \{(a, b, c) \in \mathbb{A}^3 : M = 0\}$ has 4 components.

Action of $S_3 = \text{Stab}(0, 1, -1)$ permutes 3 of them and fixes one.

The two irreducible components *Z* and *W* of $T_{2,2}$ parametrized by $X : y^3 = x(x^2 - 1)(Dx^3 + Ax^2 + Bx + C)^2$ are

$$\left\{ \begin{array}{l} A = 2u^{10}v + 2u^{6}v^{5} + v^{11} \\ B = u^{5}v^{6} \\ C = u^{6}v^{5} \\ D = 3u^{11} + u^{5}v^{6} + 4uv^{10} \end{array} \right\}, \quad \left\{ \begin{array}{l} A = u^{2}v + 4v^{3} \\ B = uv^{2} \\ C = u^{2}v \\ D = u^{3} + 2uv^{2} \end{array} \right\}.$$

Review: problems about *p*-rank

Open question B1: X a generic curve of genus g and p-rank 0

what is the Newton polygon of X?

Guess: NP has slopes 1/g and (g-1)/g. equivalently, guess rank of Cartier operator on $H^0(X, \Omega^1)$ is g-1.

Test case: generic hyperelliptic curve with g = 3 and f = 0.

Open question B2: for \mathbb{Z}/ℓ -covers $X \to \mathbb{P}^1$

What is *p*-rank of *X*?

New conditions on g and f for given ℓ , p.

Big picture: in moduli space \mathcal{A}_g , study interaction between Torelli locus, *p*-rank strata, Hurwitz spaces, and loci of abelian varieties which decompose (with product polarization).

Rachel Pries (CSU)

Supersingular curves

23/32

Geometric tools: dimension of p-rank strata

Let *p* prime and let $\ell \neq p$ be odd prime. Let *e* be the order of *p* modulo ℓ . Let *g* be multiple of $(\ell - 1)/2$ and $0 \leq f \leq g$ multiple of *e*.

Let $T_{\ell,\vec{a}}$ be the Hurwitz space of \mathbb{Z}/ℓ -covers of \mathbb{P}^1_k with inertia type \vec{a} . Let Γ be a component of the *p*-rank *f* strata $T^f_{\ell,\vec{a}}$.

Oort Purity: The Newton polygon can change only in codim 1.

 $\dim(\Gamma) \geq \dim(T_{\ell,\vec{a}}) - (B(\vec{a}) - f)/e.$

Ex: Let $\ell = 3$ and *f* even and $p \equiv 2 \mod 3$. Then

$$\dim(\Gamma) \geq g - 1 - \min(r, s) + f/2.$$

Strategy: prove existence of cyclic covers with given genus and *p*-rank by proving equality for dimension.

イロト イヨト イヨト イヨト

Suppose X has two components X_1 and X_2 (of genera g_1 and g_2 and *p*-ranks f_1 and f_2)

which intersect in exactly one ordinary double point *P* (a ramification point under \mathbb{Z}/ℓ -action on X_1 and on X_2).

 $[\mathsf{BLR}] J_X \simeq J_{X_1} \times J_{X_2}.$

So $g = g_1 + g_2$ and $f = f_1 + f_2$.

Let Δ_{g_1} be image of clutching morphism: $\kappa_{g_1,g_2} : \widetilde{T}_{\ell,g_1} \times \widetilde{T}_{\ell,g_2} \to \overline{T}_{\ell,g_1+g_2}$ where $\frown \times \checkmark \mapsto \frown \checkmark$.

For $\ell \geq 3$, have admissible condition for inertia types at node.

4 3 5 4 3

Suppose X has two components X_1 and X_2 (of genera g_1 and g_2 and p-ranks f_1 and f_2)

which intersect in ℓ ordinary double points *P* and *Q* (an orbit under \mathbb{Z}/ℓ -action on X_1 and on X_2).

$$[\mathsf{BLR}] \ 1 \to (\mathbb{G}_m)^{\ell-1} \to J_X \to J_{X_1} \times J_{X_2} \to 1.$$

So $g = g_1 + g_2 + (\ell - 1)$ and $f = f_1 + f_2 + (\ell - 1)$.

Let Ξ_{g_1} be image of clutching morphism: $\lambda_{g_1,g_2} : \overline{\mathcal{T}}_{\ell,g_1;1} \times \overline{\mathcal{T}}_{\ell,g_2:1} \to \overline{\mathcal{T}}_{\ell,g_1+g_2+(\ell-1)}$ where $\langle \times \rangle \mapsto \bigcirc$. Suppose X is a singular curve of genus g.

Then X could be reducible.

 $[\Delta_i]$ For example, it could consist of two irreducible components X_1 of genus *i* and X_2 of genus g - i intersecting in exactly one ordinary double point.

Or X could be irreducible.

 $[\Delta_0]$ For example, it could self-intersect in an ordinary double point with normalization an irreducible curve of genus g-1.

Suppose X has two components X_1 and X_2 (of genera g_1 and g_2)

which intersect in exactly one ordinary double point P

Then $J_X \simeq J_{X_1} \times J_{X_2}$.

So $g = g_1 + g_2$.

Let Δ_{g_1} be image of clutching morphism: $\kappa_{g_1,g_2} : \overline{\mathcal{M}}_{g_1;1} \times \overline{\mathcal{M}}_{g_2;1} \to \overline{\mathcal{M}}_{g_1+g_2}$ where $\frown \times \checkmark \mapsto \frown \checkmark$.

Suppose X self-intersects in one ordinary double point P.

Its normalization X_1 is a curve (of genus g_1).

Then
$$1 \to \mathbb{G}_m \to J_X \to J_{X_1} \to 1$$
.

So
$$g = g_1 + 1$$
 and $f = f_1 + 1$.

Let Ξ_0 be image of clutching morphism: $\kappa_g: \overline{\mathcal{M}}_{g;2} \to \overline{\mathcal{M}}_{g+1}$ where $\checkmark \mapsto \checkmark$.

Geometry of boundary

$$\begin{split} & \kappa_{g_1,g_2} : \mathcal{M}_{g_1;1} \times \mathcal{M}_{g_2;1} \to \Delta_{g_1}[\mathcal{M}_{g_1+g_2}] \\ & \swarrow \times \swarrow \mapsto \swarrow \\ & \kappa_g : \mathcal{M}_{g-1;2} \to \Delta_0[\mathcal{M}_g] \\ & \swarrow \mapsto \swarrow \end{split}$$

Then Δ_i is an irreducible divisor in \mathcal{M}_g .

Let
$$\partial \mathcal{M}_g = \cup_{i=0}^{g/2} \Delta_i$$
 and $\mathcal{M}_g^0 = \mathcal{M}_g - \partial \mathcal{M}_g$.

Then \mathcal{M}_{g}^{0} is the moduli space of *smooth* curves of genus *g*.

Boundary of \mathcal{M}_g^f

Let *S* be a component of \mathcal{M}_{g}^{f} . We prove that *S* intersects $\partial \mathcal{M}_{g}$ in every way possible. Also have similar result about boundary of \mathcal{H}_{a}^{f} when p > 2.

Theorem (Achter/P)

Let $g_i \in \mathbb{Z}^{\geq 1}$ and $0 \leq f_i \leq g_i$ be such that $\sum g_i = g$ and $\sum f_i = f$. Then *S* contains a chain of smooth curves Y_i of genus g_i and p-rank f_i .

Sketch of proof:

When f = 0, follows from result of Faber/van der Geer.

When $f \ge 1$, then dim S > 2g - 3. So *S* intersects Δ_0 , again by F/vdG.

$$1 \to \mathbb{G}_m \to J(\swarrow) \to J(\nwarrow) \to 1$$

A B F A B F

If $f \ge 1$, inductive strategy:

 \mathcal{M}_{g}^{f}

크

If $f \ge 1$, inductive strategy:

 \mathcal{M}_{g}^{f}

degenerate

Rachel Pries (CSU)

Supersingular curves

PIMS summer school 32 / 32

If $f \ge 1$, inductive strategy:

A B b 4 B b

If $f \ge 1$, inductive strategy:

글 🕨 🖌 글

If $f \ge 1$, inductive strategy:

< E

If $f \ge 1$, inductive strategy:

글 🕨 🖌 글