Open questions on Jacobians of curves over finite fields: *p*-ranks of curves

Rachel Pries

Colorado State University pries@math.colostate.edu

Effective methods for abelian varieties June 16-18, 2016

Open questions on *p*-ranks of curves

Let *p* be a prime number. Let *g* be a natural number. Let *X* be a curve defined over a finite field of characteristic *p*.

Open question B1:

If *X* is a generic curve of genus *g* and *p*-rank 0, what is the Newton polygon of *X*?

Open question B2:

What are the *p*-ranks of curves X which are a cyclic \mathbb{Z}/ℓ cover of the projective line?

Outline. Definition of *p*-rank;

B0: how to compute *p*-rank with Cartier operator;

a generic Newton polygon,

p-ranks of cyclic covers of the projective line

 Ω

(ロ)→ (個)→ (差)→ (差

The *p*-rank measures the number of *p*-torsion points on the Jacobian or the number of roots of the *L*-polynomial with *p*-adic absolute value 1.

Fact/Def: Let *X* be a smooth *k*-curve of genus *g*

Then $|J_{X}[p](k)| = p^{f}$ for some integer 0 \leq f \leq g called the p -rank of $X.$

Also, $f = \dim_{\mathbb{F}_p} \text{Hom}(\mu_D, J_X[\rho])$ where $\mu_p\simeq\mathrm{Spec}(k[x]/(x^p-1))$ is the kernel of Frobenius on $\mathbb{G}_m.$

Let $L(t)$ be the *L*-polynomial of the zeta function of an \mathbb{F}_q -curve X.

The *p*-rank of *X* is the length of the slope 0 portion of NP(*X*).

X is supersingular if all slopes of NP(*X*) equal 1/2. *X* supersingular implies *X* has *p*-rank 0 but converse false for $q > 3$.

 QQ

イロトメ 御 トメ 君 トメ 君 トー

The moduli space A_q of p.p. abelian varieties of dimension q has dimension dim $(A_q) = g(g+1)/2$.

The *p*-rank 0 stratum of A_q is irreducible of dimension $q(q-1)/2$ (codimension *g*).

The supersingular locus of \mathcal{A}_g has dimension $\lfloor \frac{g^2}{4} \rfloor$ $\frac{J}{4}$] (number of components is a class number).

For *g* ≥ 3, the dimension of the *p*-rank 0 strata is strictly bigger than the dimension of the supersingular strata.

 Ω

イロト イ押ト イヨト イヨトー

Computing the *p*-rank

Let *C* be the Cartier (semi-linear) operator on $H^0(X,\Omega^1).$

Manin: the *p*-rank is $f = \dim(\text{Im}(C^g)).$ Thus: one can compute f , given ρ , X , and a basis of $H^0(X,\Omega^1).$

Sage: compute the Cartier matrix, Hasse-Witt matrix, *p*-rank and *a*-number for hyperelliptic curve $X : y^2 = h(x)$ with $deg(h(x)) = 2g + 1$.

$$
P. < x >= \text{PolynomialRing}(GF(67))
$$
\n
$$
X = \text{HyperellipticCurve}(x^7 + x^3 + x)
$$
\n
$$
X.p_rank()
$$
\n
$$
2
$$

The algorithm is a generalization of this fact for $g = 1$: Let $h(x)$ be separable cubic polynomial. *E* : $y^2 = h(x)$ has *p*-rank 0 iff the coeff of x^{p-1} in $h(x)^{(p-1)/2}$ is 0.

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

Computing the *p*-rank of hyperelliptic curves

Let *p* odd and $h(x) \in k[x]$ degree $2q + 1$ with no repeated roots.

Hyp. curve $X : y^2 = h(x)$: basis for $H^0(X, \Omega^1)$ is $\{\frac{dx}{y}\}$ *y* , *xdx <u>y</u>*,..., *x*^{*g*−1}*dx*_{*y*} $\frac{y}{y}$.

Let c_r be the coefficient of x^r in the expansion of $h(x)^{(p-1)/2}$.

For 1 \leq *t* \leq g , consider the $g \times g$ matrix M_t s.t. $M_t(i,j) = c_{\rho i - j}^{\rho^{t-1}}$ *pi*−*j* .

Yui:

The action of the Cartier operator on $H^0(X,\Omega^1)$ wrt this basis is $M_1.$ *X* is ordinary ($f = g$) if and only if $det(M_1) \neq 0$.

The *p*-rank of *X* is $f = \text{rank}(M)$ where $M = M_qM_{q-1}\cdots M_2M_1$.

B0: Need to fix! Achter/Howe found pervasive typo in literature (Yui, Zarhin, ...) Sage computes $M = M_1 M_2 \cdots M_q$ $M = M_1 M_2 \cdots M_q$ [:\(](#page-6-0)

 200

Example - Hermitian curve X : $y^q + y = x^{q+1}$, $q = p^n$

The Cartier operator *C* acts on $H^0(X_q,\Omega^1).$

Let
$$
\Delta = \{(i,j) \mid i,j \in \mathbb{Z}, i,j \geq 0, i+j \leq q-2\}
$$
. A basis for $H^0(X_q, \Omega^1)$ is $B = \{\omega_{i,j} := x^i y^j dx \mid (i,j) \in \Delta\}$.

Write $i = i_0 + pi_n^T$ and $j = j_0 + pj_n^T$ with $0 \le i_0, j_0 \le p - 1$.

$$
C(x^{i}y^{j}dx) = x^{i_{n}^{T}}y^{j_{n}^{T}}C(x^{i_{0}}(x^{q+1} - y^{q})^{i_{0}}dx)
$$

= $x^{i_{n}^{T}}y^{j_{n}^{T}}\sum_{l=0}^{j_{0}} {j_{0} \choose l} (-1)^{l}x^{p^{n-1}(j_{0}-l)}y^{p^{n-1}l}C(x^{i_{0}+j_{0}-l}dx).$

 $C(x^k dx) \neq 0$ iff $k \equiv -1$ mod *p*. Need $i_0 + j_0 - \ell \equiv -1$ mod *p*.

If $i_0 + j_0 < p - 1$, then $C(\omega_{i,j}) = 0$. If $i_0 + j_0 \geq p-1,$ the[n](#page-13-0) $C(\omega_{i,j}) = \omega_{p^{n-1}(p-1-i_0) + i_0^T,p^{n-1}(i_0+j_0-(p-1))+j_0^T}.$ $C(\omega_{i,j}) = \omega_{p^{n-1}(p-1-i_0) + i_0^T,p^{n-1}(i_0+j_0-(p-1))+j_0^T}.$

nan

Existence of curves with given genus and *p*-rank

The algorithm can be used to compute the *p*-rank of a fixed curve, but it is too complicated to be algebraically constructive. Let $g \in \mathbb{N}$, $0 \le f \le g$ and *p* prime.

Let \mathcal{M}^f_g (resp. \mathcal{H}^f_g) denote the ρ -rank f strata of the moduli space of (hyperelliptic) curves of genus *g*.

Theorem: Faber/Van der Geer

Every component of \mathcal{M}_g^f has dimension 2 $g\!-\!3\!+\!f.$

Theorem: Glass/P (*p* odd), P/Zhu (*p* even)

Every component of \mathcal{H}_{g}^{f} has dimension $g-1+f.$

There exists a smooth (hyp.) curve over $\overline{\mathbb{F}}_p$ with genus g and p-rank f.

In most c[a](#page-6-0)ses, [i](#page-8-0)t is not known whethe[r](#page-2-0) \mathcal{M}_g^f \mathcal{M}_g^f \mathcal{M}_g^f an[d](#page-14-0) \mathcal{H}_g^f \mathcal{H}_g^f \mathcal{H}_g^f a[re](#page-7-0) irr[e](#page-13-0)d[u](#page-1-0)[c](#page-2-0)[i](#page-13-0)[bl](#page-14-0)[e.](#page-0-0)

Let *A* be the generic p.p. abelian variety of dimension *g* and *p*-rank 0.

TFAE and true for *A*:

- * the Newton polygon is $G_{1,g-1}oploplus G_{g-1,1}$ (slopes $\frac{1}{g}$ and $\frac{g-1}{g}$);
- * the rank of the Cartier operator on $H^0(A, \Omega^1)$ is $g-1,$
- * the *a*-number of *A* is 1.

B1 Open problem. For all *p* and *g*,

(1) are conditions * true for a generic curve of genus *g* and *p*-rank 0? (2) does there exist a curve of genus *g* and *p*-rank 0 satisfying ∗?

(1) Yes: $g = 1, 2, 3$ for all p . (2) Yes: $g = 1, 2, 3, 4$ for all p .

 Ω

イロト イ押 トイラト イラト

Existence of slopes 1/4 and 3/4

For all *p*, there exists a smooth curve of genus 4 defined over $\overline{\mathbb{F}}_p$ **whose NP has slopes** 1/4 **and** 3/4**.**

Let *W* be moduli space of p.p. abelian 4-folds with action by $\mathbb{Z}[\zeta_3]$ of signature (3, 1). Then dim(W) = 3.

Also W is irreducible since $\mathbb{Z}[\zeta_3]$ has class number 1.

Let *S* be moduli space of curves C_f : $y^3 = f(x)$ (square-free $f(x)$ degree 6). Then $\dim(S) = 3$.

The image of Torelli morphism on *S* is open, dense subspace of *W* .

There exists a point of *W* representing abelian variety with slopes 1/4 and 3/4. Mantovan 2004 if p splits in $\mathbb{Q}(\zeta_3)$, Bültel/Wedhorn 06 if p inert in $\mathbb{O}(\zeta_3)$, SAGE if $p = 3$.

 QQ

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Proof: inductive strategy, reduce to *p*-rank $f = 0$

Let ν*^r* be a NP type with *p*-rank 0 occurring in dimension *r*.

Let $c_r = \text{codim}(\mathcal{A}_g[v_r], \mathcal{A}_g)$.

For $g \ge r$, let v_q be the NP type with *p*-rank $g - r$ 'containing' v_r

$$
(v_g = (G_{0,1} \oplus G_{1,0})^{g-r} \oplus v_r)
$$
, add $g-r$ slopes of 0, 1.

Proposition P

If there exists a component S_r of $\mathcal{M}_r[\operatorname{v}_r]$ s.t. $\operatorname{codim}(S_r, \mathcal{M}_r) = c_r,$ then, for all $q > r$, there exists a component S_g of $\mathcal{M}_g[\operatorname{v}_g]$ s.t. $\operatorname{codim}(S_g, \mathcal{M}_g) = c_r.$

 QQQ

Newton polygon results for $f = g - 3$ and $f = g - 4$

Recall
$$
v_{g,f} = f(G_{0,1} + G_{1,0}) + (G_{1,g-f-1} + G_{g-f-1,1}).
$$

Application - Achter/P. Let $q > 3$ and $f = q - 3$.

The generic point of any component of \mathcal{M}_g^{g-3} has Newton polygon ν*g*,*g*−³ (slopes 0, 1 $\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3}$, 1).

Application - Achter/P. Let $q > 4$ and $f = q - 4$.

The generic point of *at least one* component of \mathcal{M}_g^f has Newton polygon ν*g*,*g*−⁴ (slopes 0, 1 $\frac{1}{4}, \frac{3}{4}$ $\frac{3}{4}$, 1).

Note: When $g = 4$, there is *at most one* component of \mathcal{M}_4^0 whose generic NP is not $\mathsf{v}_{4,0}.$ If so, the NP has slopes $\frac{1}{3},\frac{1}{2}$ $\frac{1}{2}$, $\frac{2}{3}$ $\frac{2}{3}$.

 Ω

イロトメ 御 トメ 君 トメ 君 トー 君

A generic Newton polygon

If
$$
f = g
$$
, the NP is $g(G_{0,1} + G_{1,0})$ (slopes 0, 1).
If $f = g - 1$, the NP is $(g - 1)(G_{0,1} + G_{1,0}) + G_{1,1}$ (slopes 0, $\frac{1}{2}$, 1).
If $f = g - 2$, the NP is $(g - 2)(G_{0,1} + G_{1,0}) + 2G_{1,1}$ (slopes 0, $\frac{1}{2}$, 1)

If $0 \le f \le g-3$, let $v_{g,f} = f(G_{0,1} + G_{1,0}) + (G_{1,g-f-1} + G_{g-f-1,1}),$ (slopes 0,1 with mult. *f* and $\frac{1}{g-f}, \frac{g-f-1}{g-f}$ with mult. $g-f.$ Note that ν*g*,*^f* is the most generic Newton polygon with *p*-rank *f*.

Conjecture: let $q > 3$ and $0 < f < q - 3$

The generic point of any component of \mathcal{M}_g^f has Newton polygon $\mathsf{v}_{g,f}.$

B1 Problem: hyperelliptic $q = 3$, codim $(H_3, A_3) = 1$

Problem: Let *p* odd and *X* a hyp. curve of genus *g* = 3.

If *X* generic *p*-rank 0, does Cartier matrix on *H* 0 (*X*,Ω 1) have rank 2?

X:
$$
y^2 = h(x)
$$
 with $h(x) = x^7 + ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + x$.
Finite-to-1 map $\mathbb{A}_k^5 - \Delta \to \mathcal{H}_3$ taking (a, b, c, d, e) to X.

The condition $M_2M_1M_0 = [0]$ true for dim 2 subspace in (a, b, c, d, e) . For each component, does M₀ generically have rank 2?

Elkin/P: yes when $p = 3, 5$. If $p = 3$, Cartier operator has matrix

$$
M_1=\left[\begin{array}{ccc}e&1&0\\b&c&d\\0&1&a\end{array}\right].
$$

If $r < 1$ $r < 1$, then $e = b = d = a = 0$ $e = b = d = a = 0$ $e = b = d = a = 0$ $e = b = d = a = 0$, and X singula[r.](#page-12-0) [So](#page-14-0) $r = 2$ $r = 2$ [if](#page-13-0) $f = 0$ $f = 0$ [.](#page-0-0)

B2 Open question about *p*-ranks of cyclic covers

Question: Let $\ell \neq p$ odd prime.

Does there exist a \mathbb{Z}/ℓ -cover $\mathsf{Y} \to \mathbb{P}^1$ over $\overline{\mathbb{F}}_\rho$ such that Y is a smooth curve of genus *g* and *p*-rank *f*?

Not always! There are new constraints on *g* and *f*. Equation: $y^{\ell} = \prod_{i=1}^{n} (x - \beta_i)^{a_i}$ where $0 < a_i < \ell$ and $\sum_{i=1}^{n}$ $\sum_{i} a_i ≡ 0 \bmod \ell.$ a_1, \ldots, a_n well-defined up to permutation and sim. mult. by $c \in (\mathbb{Z}/\ell\mathbb{Z})^*.$

Def: Inertia type: $\vec{a} = \{a_1, \ldots, a_n\}.$

Riemann-Hurwitz: $g(Y) = (\ell-1)(n-2)/2$.

Congruence condition

Let e be the order of p modulo ℓ . Then e divides the p -rank f .

Eigenspaces

Let $\tau \in$ Aut(*Y*) with $\tau(y) = \zeta y$ where ζ is primitive ℓ th root of unity.

Then τ induces a linear transformation of $H^0(Y, \Omega^1).$

Decompose $H^0(Y,\Omega^1)$ into eigenspaces: $H^0(Y,\Omega^1)=\oplus_{i=0}^{\ell-1}$ $\iint_{i=0}^{\ell-1} L_i,$ where $\mathcal{L}_i = \{ \omega \in H^0(Y, \Omega^1) \mid \tau^*(\omega) = \zeta^i \omega \}.$

Fact: Let
$$
d_i = \dim(\mathcal{L}_i)
$$
. Then $d_0 = 0$ and $d_i = -1 + \sum_{j=1}^n \left(\frac{ia_j}{\ell} - \left\lfloor \frac{ia_j}{\ell} \right\rfloor \right)$.

Ex: Let $\ell = 3$. The *signature type* is (r, s) where $r = \dim(\mathcal{L}_1)$ and $s = \dim(\mathcal{L}_1)$. Note $r + s = g$ and $(g - 1)/3 \le r, s \le (2g + 1)/3$. There is a bijection between inertia types and signature types:

$$
\#\{a_i=1\}=2s-r+1,\ \#\{a_i=2\}=2r-s+1.
$$

 Ω

イロト イ押ト イヨト イヨト ニヨ

Upper bound on *p*-rank

Cartier operator *C* permutes ${L_i | 1 ≤ i ≤ l − 1}$ by $C(ζ^{pi}ω) = ζⁱC(ω)$ so $C(\mathcal{L}_i)\subset\mathcal{L}_{\sigma(i)}$ where σ is the permutation $i\mapsto p^{-1}i$ mod ℓ of $(\mathbb{Z}/\ell\mathbb{Z})^*.$

Each orbit of $\{L_i \mid 1 \leq i \leq \ell-1\}$ under *C* has length *e*, where e is the order of p modulo ℓ .

Bouw: (dual result to action of *F* on *H* 1 (*Y*,*O*))

The stable rank of C on \mathcal{L}_i is bounded by $\min\{\dim(\mathcal{L}_i)\}$ across orbit.

Let
$$
B(\vec{a}) = \sum_{\text{orbits } O} e \cdot \min\{\dim(\mathcal{L}_i) \mid i \in O\}.
$$

Then $f(Y) < B(\vec{a})$ for all \mathbb{Z}/ℓ -covers with inertia type \vec{a} .

The upper bound $B(\vec{a})$ occurs as the p -rank for (generic) curve in $\mathcal{T}_{\ell, \vec{a}}.$

Ex: Let $\ell = 3$. Then*B*(\vec{a} \vec{a} \vec{a} \vec{a}) = *g* [if](#page-16-0) $p \equiv 1 \mod 3$ and *B*(\vec{a}) = [2](#page-36-0)min{*r*, *[s](#page-17-0)*} if $p \equiv 2 \mod 3$. 200 Let $g \geq 3$ and let (r, s) be a trielliptic signature for g.

Suppose either:

- **1** $p \equiv 2 \mod 3$ is odd and $0 \le f \le 2 \min(r, s)$ is even; or
- 2 $p \equiv 1 \mod 3$ and $f = q 2$.

Ozman/P/Weir

Then there exists a $\mathbb{Z}/3$ -cover $\phi:Y\to \mathbb{P}^1$ with $\,$ a smooth curve of genus *g*, trielliptic signature (*r*,*s*) and *p*-rank *f*.

More generally, *T f* (*r*,*s*) is non-empty and contains a component *S* with $dim(S) = max(r, s) - 1 + f/2$ in case (1) and $dim(S) = f$ in case (2).

 Ω

イロト イ押ト イヨト イヨト ニヨ

Let $\ell \neq p$ be prime.

Restrict to \mathbb{Z}/ℓ -covers of the projective line with 3 branch points. (There are only finitely many of these).

Open question

For $\vec{a} = (a_1, a_2, a_3)$ inertia type for \mathbb{Z}/ℓ , what is the *p*-rank of the \mathbb{Z}/ℓ -cover $\mathsf{Y} \to \mathbb{P}^1$ with inertia $\vec{\mathsf{a}}$?

Can suppose that $a_2 = 1$. Reduce to equation $y^{\ell} = x^{a_1}(x-1)^1 = x^{a_1+1} - x^{a_1}$.

Elkin: formula for Cartier operator on $H^0(X, \Omega^1)$.

 Ω

イロト イ押ト イヨト イヨトー

Example: trielliptic $q = 4$, signature (2, 2)

If
$$
g = 4
$$
 and $\dim(L_1) = \dim(L_2) = 2$:

(Note - Torelli locus has codimension 1 in $GU(2,2)$).

Write
$$
X : y^3 = p_1(x)p_2(x)^2
$$
 where $p_1(x) = x(x^2 - 1)$

and $p_2(x) = x^3 + ax^2 + bx + c$ has distinct roots in $k - \{0, \pm 1\}.$

Basis $\{w_{11} = \frac{dx}{v}\}$ $\frac{dx}{y}$, $w_{12} = \frac{xdx}{y}$ $\frac{dx}{y}$ } and { $w_{21} = p_1(x) \frac{dx}{y^2}$ $\frac{dx}{y^2}$, $w_{22} = p_1(x) \frac{xdx}{y^2}$ *y* ² }. Elkin: action of *C* on basis.

$$
C(w_{11}) = f_{1,p-1}(x)w_{21}, C(w_{12}) = f_{1,p-2}(x)w_{21},
$$

$$
C(w_{21}) = f_{2,p-1}(x)w_{11}, C(w_{22}) = f_{2,p-2}(x)w_{11}.
$$

The ρ -rank of X is rank of matrix $M = C^{(\rho^3)} C^{(\rho^2)} C^{(\rho)} C.$

Example: trielliptic $q = 4$ signature (2, 2), $p = 5$

Curve $X: y^3 = x(x^2 - 1)p_2(x)^2$ where $p_2(x) = x^3 + ax^2 + bx + c$. When $p = 5$, the Cartier matrix *C* is

$$
\left[\begin{array}{cccc}0&0&4b&2a+c\\0&0&4c&2b+3\\4abc+4b^3+3bc^2+2c^2&a^3+ab+2a+3c&0&0\\2ac^2+2b^2c+c^3&3a^2b+2a^2+ac+3b^2+2b&0&0\end{array}\right]
$$

det(*C*) = $(ab + 2c^2 + 2)^2$ disc(*p*₂(*x*)).

Problem: $M = C^{(125)}C^{(25)}C^{(5)}C$ has 8 non-trivial entries, each a polynomial in 3 variables with 288 monomials, half of degree 208, the other half of degree 416.

Strategy: use resultants, lift solutions.

.

Example: trielliptic $q = 4$ signature (2,2), $p = 5$

Ozman/P/Weir: Let $p = 5$.

The p -rank 0 strata of the moduli space $T_{2,2}$ of genus 4 trielliptic curves with signature (2,2) has two components, each rational of dimension 1, each intersecting Δ_2 .

Proof: Show $V = \{(a, b, c) \in \mathbb{A}^3 : M = 0\}$ has 4 components.

Action of $S_3 = \text{Stab}(0, 1, -1)$ permutes 3 of them and fixes one.

The two irreducible components Z and W of $T_{2,2}$ parametrized by X : $y^3 = x(x^2 - 1)(Dx^3 + Ax^2 + Bx + C)^2$ are

$$
\left\{\n\begin{array}{l}\nA = 2u^{10}v + 2u^6v^5 + v^{11} \\
B = u^5v^6 \\
C = u^6v^5 \\
D = 3u^{11} + u^5v^6 + 4uv^{10}\n\end{array}\n\right\},\n\left\{\n\begin{array}{l}\nA = u^2v + 4v^3 \\
B = uv^2 \\
C = u^2v \\
D = u^3 + 2uv^2\n\end{array}\n\right\}.
$$

.

 QQQ

Review: problems about *p*-rank

Open question B1: *X* a generic curve of genus *g* and *p*-rank 0

what is the Newton polygon of *X*?

Guess: NP has slopes $1/g$ and $(g-1)/g$. equivalently, guess rank of Cartier operator on *H* 0 (*X*,Ω 1) is *g* −1.

Test case: generic hyperelliptic curve with $q = 3$ and $f = 0$.

Open question B2: for \mathbb{Z}/ℓ -covers $X \to \mathbb{P}^1$

What is *p*-rank of *X*?

New conditions on q and f for given ℓ , p .

Big picture: in moduli space *Ag*, study interaction between Torelli locus, *p*-rank strata, Hurwitz spaces, and loci of abelian varieties which decompose (with product polarization). 4 (D) 3 (F) 3 (F) 3 (F) QQ

Geometric tools: dimension of *p*-rank strata

Let *p* prime and let $\ell \neq p$ be odd prime. Let e be the order of p modulo ℓ . Let *g* be multiple of $(\ell-1)/2$ and $0 < f < g$ multiple of *e*.

Let $\mathcal{T}_{\ell, \vec{\bm{a}}}$ be the Hurwitz space of \mathbb{Z}/ℓ -covers of \mathbb{P}^1_k with inertia type $\vec{\bm{a}}$. Let Γ be a component of the ρ -rank f strata $\mathcal{T}^f_{\ell, \vec{\mathsf{d}}}.$

Oort Purity: The Newton polygon can change only in codim 1.

 $\dim(\Gamma) \geq \dim(\mathcal{T}_{\ell, \vec{\mathbf{a}}}) - (B(\vec{\mathbf{a}}) - f)/e.$

Ex: Let $\ell = 3$ and *f* even and $p \equiv 2 \text{ mod } 3$. Then

$$
\dim(\Gamma) \geq g-1-\min(r,s)+f/2.
$$

Strategy: prove existence of cyclic covers with given genus and *p*-rank by proving equality for dimension.

 QQQ

メロメメ 御きメ 重き メ唐 メー 重

Suppose X has two components X_1 and X_2 (of genera q_1 and q_2 and p-ranks f_1 and f_2)

which intersect in exactly one ordinary double point *P* (a ramification point under \mathbb{Z}/ℓ -action on X_1 and on X_2).

 $[BLR]$ $J_X \simeq J_{X_1} \times J_{X_2}$. So $q = q_1 + q_2$ and $f = f_1 + f_2$.

Let Δ_{g_1} be image of clutching morphism: $\kappa_{g_1,g_2}:\tilde{T}_{\ell,g_1}\times \tilde{T}_{\ell,g_2}\to \overline{T}_{\ell,g_1+g_2}$ where $\diagdown\, \times \diagup\, \mapsto \diagup\,\searrow \diagup.$

For $\ell > 3$, have admissible condition for inertia types at node.

 Ω

REPAREM

Suppose X has two components X_1 and X_2 (of genera q_1 and q_2 and p-ranks f_1 and f_2)

which intersect in ℓ ordinary double points P and Q (an orbit under \mathbb{Z}/ℓ -action on X_1 and on X_2).

$$
[\mathsf{BLR}] 1 \to (\mathbb{G}_m)^{\ell-1} \to J_X \to J_{X_1} \times J_{X_2} \to 1.
$$

So $q = q_1 + q_2 + (\ell - 1)$ and $f = f_1 + f_2 + (\ell - 1)$.

Let Ξ_{g_1} be image of clutching morphism: $\lambda_{g_1, g_2}: T_{\ell, g_1; 1} \times T_{\ell, g_2: 1} \rightarrow T_{\ell, g_1 + g_2 + (\ell - 1)}$ where $\subset \times \rightarrow \mapsto \sim$.

Suppose *X* is a singular curve of genus *g*.

Then *X* could be reducible.

[∆*ⁱ*] For example, it could consist of two irreducible components *X*¹ of genus *i* and X_2 of genus $g - i$ intersecting in exactly one ordinary double point.

Or *X* could be irreducible.

 $[\Delta_0]$ For example, it could self-intersect in an ordinary double point with normalization an irreducible curve of genus *g* −1.

Suppose X has two components X_1 and X_2 (of genera q_1 and q_2)

which intersect in exactly one ordinary double point *P*

Then $J_X \simeq J_{X_1} \times J_{X_2}$.

So $q = q_1 + q_2$.

Let Δ_{g_1} be image of clutching morphism: $\kappa_{g_1,g_2}: \bar{M}_{g_1;1} \times \bar{M}_{g_2;1} \to \overline{M}_{g_1+g_2}$ where $\frown \times \frown \mapsto \frown \mathcal{C}$.

Suppose *X* self-intersects in one ordinary double point *P*.

Its normalization X_1 is a curve (of genus q_1).

Then
$$
1 \to \mathbb{G}_m \to J_X \to J_{X_1} \to 1
$$
.

So
$$
g = g_1 + 1
$$
 and $f = f_1 + 1$.

Let Ξ_0 be image of clutching morphism: $\kappa_q : \overline{\mathcal{M}}_{q:2} \to \overline{\mathcal{M}}_{q+1}$ where $\lt \to \lt \.$

Geometry of boundary

$$
\mathbf{K}_{g_1,g_2}: \mathcal{M}_{g_1;1} \times \mathcal{M}_{g_2;1} \to \Delta_{g_1}[\mathcal{M}_{g_1+g_2}]
$$

\n
$$
\times \longrightarrow \times \longrightarrow \times
$$

\n
$$
\mathbf{K}_g: \mathcal{M}_{g-1;2} \to \Delta_0[\mathcal{M}_g]
$$

\n
$$
\leftarrow \rightarrow \leftarrow
$$

Then Δ_i is an irreducible divisor in $\mathcal{M}_g.$

Let
$$
\partial M_g = \bigcup_{i=0}^{g/2} \Delta_i
$$
 and $M_g^0 = M_g - \partial M_g$.

Then \mathcal{M}_{g}^{0} is the moduli space of *smooth* curves of genus $g.$

Boundary of \mathcal{M}_{g}^{f}

Let *S* be a component of \mathcal{M}_{g}^{f} . We prove that *S* intersects ∂*M^g* in every way possible. Also have similar result about boundary of \mathcal{H}_{g}^{f} when p $>$ 2.

Theorem (Achter/P)

 L et $g_i \in \mathbb{Z}^{\geq 1}$ and $0 \leq f_i \leq g_i$ be such that $\sum g_i = g$ and $\sum f_i = f$. Then S *contains a chain of smooth curves Yⁱ of genus gⁱ and p-rank fⁱ .*

Sketch of proof:

When $f = 0$, follows from result of Faber/van der Geer.

When $f > 1$, then dim $S > 2g - 3$. So *S* intersects Δ_0 , again by F/vdG.

$$
1\to \mathbb{G}_m\to J(\mathbb{C}^{\diagdown})\to J(\mathbb{C}^{\diagdown})\to 1
$$

 $\mathcal{M}_{\mathcal{G}}^{1}$

4 ロ ト ィ *同* ト

 \mathcal{A} E K. -4 B 重

 299

 $\mathcal{M}_{\mathcal{G}}^{1}$

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

degenerate

∋⇒ $\left(1\right)$ Þ

 299

≡∗ -4 B Þ

 299

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

Þ

 299

 $+$ $+$ $+$ $-$

 \sim

Þ

 299

 $+$ $+$ $+$ $-$

Þ

 299

 $+$ $+$ $+$ $-$

 \sim