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p-adic heights

Let
I K be a number field
I J/K be the Jacobian of a smooth projective curve X (e.g., an

elliptic curve)
I p be a prime of good reduction for X and ordinary

reduction for J.
In these lectures, we’ll discuss global p-adic height pairings

h : J(K)× J(K)→ Qp.

I While there are many parallels with the theory of the
canonical height (presented in Müller’s lectures), one key
difference is that there may be many canonical p-adic
valued pairings! (More later.)
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Canonical and p-adic heights: differences and
similarities

Here are a few interesting differences and similarities between
canonical and p-adic heights:
I When K = Q, there is just one p-adic height (up to

nontrivial scalar multiple), the cyclotomic p-adic height. To
make our lives easier, we will spend most of our time
working over K = Q.

I h is a bilinear pairing. It is symmetric iff certain (very
reasonable) choices are made. (More later.) When we need
to, let’s go ahead and make these reasonable choices.

I For P torsion, h(P) = 0. Does h(P) = 0 imply P torsion?
Not necessarily. Also, nondegeneracy of the cyclotomic
p-adic height for elliptic curves over Q is already rather
mysterious. (More later.)

There are quite a few things that are different in the p-adic
world; nevertheless p-adic heights are also useful for explicit
methods. We will highlight several applications.
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Outline

I Motivation
I Cyclotomic p-adic height on elliptic curves over Q
I Anticyclotomic p-adic height on elliptic curves over

quadratic imaginary number fields
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Motivation
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Why compute p-adic heights?
p-adic Birch and Swinnerton-Dyer conjecture
I Mazur-Tate-Teitelbaum ’86: stated the conjecture for

elliptic curves and gave numerical evidence
I Mazur-Tate ’91: p-adic heights in terms of p-adic sigma

function
I Wuthrich ’04: variation of p-adic height in a family of

elliptic curves
I Mazur-Stein-Tate ’06 (and Harvey ’08): fast method for

computing cyclotomic p-adic height for elliptic curves
I Stein-Wuthrich ’13: fast method for computing p-primary

part of Shafarevich-Tate group for elliptic curves when
p-descents are impractical and also where no other
methods are known (e.g., Mordell-Weil rank at least 2)

I B.-Müller-Stein ’15: stated conjecture for modular abelian
varieties, with data for modular abelian surfaces
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Why compute p-adic heights?

Examples of Kim’s nonabelian Chabauty method to find
integral or rational points on curves, in the spirit of explicit
Mordell
I Kim, B.-Kedlaya-Kim ’10: integral points on elliptic curves

of rank 1
I B.-Besser-Müller ’13: integral points on genus g

hyperelliptic curves whose Jacobians have Mordell-Weil
rank g

I B.-Dogra ’16: rational points on genus 2 bielliptic curves
whose Jacobians have Mordell-Weil rank 2
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p-adic heights on elliptic curves

Let p be an odd prime and let E be an elliptic curve over a
number field K with good ordinary reduction at p.
I A p-adic height pairing is a symmetric bilinear pairing

( , ) : E(K)× E(K)→ Qp.

I p-adic height pairings were
I First defined for abelian varieties by Schneider (’82),

Mazur-Tate (’83),
I extended to motives by Nekovář (’93),
I also defined, in the case of Jacobians of curves, by Coleman

and Gross (’89).
I This third definition is known to be equivalent to the

previous ones (Besser, ’04).
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Birch and Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer)
Let E be an elliptic curve over Q. Then we have

r := rk(E/Q) = ords=1 L(E, s)

and
L∗(E, 1) =

Reg(E/Q) ·Ω · |X(E/Q)| ·
∏

v cv(E)
|E(Q)tors|2

,

where L∗(E, 1) is the leading coefficient of L(E, s) and Reg(E/Q) is
the regulator, defined using the real-valued Néron-Tate height pairing.
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p-adic Birch and Swinnerton-Dyer conjecture
Conjecture (Mazur–Tate–Teitelbaum)
Let E be an elliptic curve over Q with good, ordinary reduction at p.
Then we have

r := rk(E/Q) = ordT=0(Lp(E, T))

and

L∗
p(E, 0) = εp

Regγ(E/Q) · |X(E/Q)| ·
∏

v cv(E)
|E(Q)tors|2

,

where L∗
p(E, 0) is the leading coefficient of the p-adic L-function

Lp(E, T) and

Regγ(E/Q) = Regp(E/Q)/ logp(γ)
r,

with Regp(E/Q) the p-adic regulator, defined using the cyclotomic
p-adic height pairing, a p-adic analogue of the real-valued Néron-Tate
height pairing.
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Data in Mazur-Tate-Teitelbaum
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p-adic heights: p-adic BSD and X

In fact, more is known about p-adic BSD than classical BSD.
I By work of Kato, the computation of an approximation of

the p-adic L-series of E for an odd prime p of good
reduction produces an upper bound on the rank r of the
Mordell-Weil group E(Q) !

Moreover, explicitly computing p-adic heights and regulators
plays an important role in the following:

Theorem (Stein-Wuthrich)
Let E/Q be the rank 2 elliptic curve 389a1. Then for 2 and all 5005
good ordinary primes p < 48859 except p = 16231 we have

X(E/Q)[p] = 0.
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p-adic heights and K-rational points

Theorem (B.-Dogra-Müller ’16)
Consider X0(37) with affine model

y2 = −x6 − 9x4 − 11x2 + 37.

Then X0(37)(Q(i)) = {(±2i,±1), (±1,±4),∞±}.

Remarks:
I The proof of this result involves

I studying relationships between p-adic heights on elliptic
curves over number fields, as well as

I explicit computation of p-adic heights!

I Note that we have that rk J0(37)(Q(i)) = 2, so this is not
amenable to the Chabauty-Coleman method.
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Cyclotomic
p-adic height on E/Q
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Computing cyclotomic p-adic height on E/Q
Let
I E be an elliptic curve over Q,
I p a good, ordinary prime for E.

In this scenario, there is (up to scalar multiple) only one p-adic
height, the cyclotomic p-adic height.

Suppose P ∈ E(Q) is a non-torsion point
I that reduces to O ∈ E(Fp)

I and to a nonsingular point of E(F`) for all primes ` at
which E has bad reduction.

Mazur-Stein-Tate (’06) gave a fast way to compute the
cyclotomic p-adic height h:

h(P) =
1
p

logp

(
σp(P)
d(P)

)
.
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σp(P), d(P)

Suppose E is given by a model y2 = x3 + Ax + B, with A, B ∈ Z.
We define the p-adic sigma function and the denominator
function:
I p-adic σ function σp: the unique odd function
σp(t) = t + · · · ∈ tZp[[t]] satisfying

x(t) + c = −
d
ω

(
1
σp

dσp

ω

)
(withω the invariant differential dx

2y and c ∈ Zp, which can
be computed by Kedlaya’s algorithm)

I denominator function d(P): if P = (xP, yP) =
(

aP
d2

P
, bP

d3
P

)
, then

d(P) = dP
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The height pairing

We use h(nP) = n2h(P) to extend the height to the full
Mordell-Weil group.

The symmetric, bilinear pairing is defined by

E(Q)× E(Q)→ Qp

( P , Q ) 7→ h(P) + h(Q) − h(P + Q)
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Example: computing a cyclotomic p-adic height
Let E be the rank 1 curve y2 + y = x3 − x of conductor 37. The
point P = (0, 0) is a generator for E(Q). We compute the p-adic
height of P for the good ordinary prime p = 5.
I The component group of EF37 is trivial. The reduction of P

to E(F5) has order 8, so we let

Q = 8P =

(
21
25

,−
69
125

)
.

We will compute h(Q) = h(8P) and then use
h(P) = 1

64 h(8P).
I Denominator: We have d(P) = 5.
I σ5: solve the differential equation defining the 5-adic

sigma function σ5:

x(t) + c = −
d
ω

(
1
σ5

dσ5

ω

)
,
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Computing a p-adic height
I This gives

σ5(t) = t +
1
2

ct3 +
1
2

t4 +

(
1
8

c2 −
5

12

)
t5 +

3
4

ct6 + · · · ,

where

c =
1
12

E2(E,ω) = 1+ 5+ 4 · 52 + 53 + 54 + 56 + 4 · 57 +O(58).

I Recall Q = 8P =
(21

25 ,− 69
125

)
. So t = −

x(Q)
y(Q) = 35

23 and
σ5(t) = 4 · 5 + 52 + 53 + 54 + 2 · 56 + 3 · 58 + O(59).

I So

h(Q) =
1
5

log5

(
4 · 5 + 52 + 53 + 54 + 2 · 56 + 3 · 58 + O(59)

5

)
= 3 + 5 + 2 · 53 + 3 · 54 + 3 · 55 + 2 · 56 + O(58),

I Finally,

h(P) =
1
64

h(Q) = 2+4·5+52+2·53+2·54+3·55+2·56+O(57).
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p-adic heights on elliptic
curves over quadratic

imaginary number fields
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From Q to more general number fields

Unlike the R-valued canonical height, there may be many
canonical p-adic valued heights associated to E/K for a given
number field K.
I Up to nontrivial scalar multiple:

{canonical p-adic height pairings} 1:1←→ {Zp-extensions L/K}

I Next interesting case is K quadratic imaginary: here we
have two Zp extensions, and we study cyclotomic and
anticyclotomic p-adic heights
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Anticyclotomic p-adic height on E(K)

I Setup:
I K a quadratic imaginary number field
I p = ππc a prime split in K
I E/K has good ordinary reduction at the primes above p.

I Suppose P ∈ E(K) is a non-torsion point that reduces to
I 0 in E(Fπ) and E(Fπc) and to
I the connected component of all special fibers of the Néron

model of E
I The anticyclotomic p-adic height hanti := hρ is given by

hanti(P) = ρπ(σπ(P)) − ρπ(σπ(Pc)) +
∑
w-p

ρw(dw(P)),

where ρ is the anticyclotomic idele class character
(ρ ◦ c = −ρ for c complex conjugation).
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A key difference between cyclotomic and
anticyclotomic

Conjecture (Schneider)
The cyclotomic height pairing is nondegenerate; equivalently the
associated p-adic regulator is nonzero.

I However, other p-adic height pairings need not be
nondegenerate!

I For E/Q with good ordinary reduction at p and K
quadratic imaginary over which E(K) has odd rank, the
anticyclotomic p-adic height pairing for E/K is not
nondegenerate!
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Anticyclotomic heights: computational issues

The anticyclotomic p-adic height can be expressed as

hanti(P) = ρπ

(
σπ(P)
σπ(Pc)

)
+

∑
`=λλc

`,p

ρλ

(
dλ(P)

dλc(P)c

)
.

Computing the anticyclotomic p-adic height poses two new
challenges:
I We begin by computing n such that nP and nPc to reduce to

0 ∈ E(Fp). How do we deal with the (typically, very large)
multiple of P that results? In particular:

I How do we determine the finite set of split primes which
contribute to said point’s denominator?
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Example (yikes!)
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Anticyclotomic height: some packaging
Main challenge: contributions from primes not dividing p.
I Consider the ideal (xP)OK and let δ(P) ⊂ OK be its

denominator ideal.
I Fix dh(P) ∈ OK as follows:

dh(P)OK =
∏
q

qh ordq(δ(P))/2

where h is the class number of K, and the product is over
all prime ideals q in OK.

I Fix an identification ψ : Kπ ' Qp. We have:

Proposition
The anticyclotomic p-adic height of P ∈ E(K) is

hρ(P) =
1
p

logp

(
ψ

(
σπ(P)
σπ(Pc)

))
+

1
hp

logp

(
ψ

(
dh(P)c

dh(P)

))
.
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Example
Let E be the elliptic curve “389.a1” given by

y2 + y = x3 + x2 − 2x.

I analytic rank of E/Q is 2; algebraic rank of E(Q) is 2
I Let K = Q(

√
−11); we see E(K) has rank 3.

I 5 is a good ordinary split prime in K.
I Consider A1 =

(
− 6

25

√
−11 + 27

25 ,− 62
125

√
−11 + 29

125

)
∈ E(K).

We compute hanti(A1).
I Let (5) = ππc in OK, where π = ( 1

2

√
−11 + 3

2). This allows
us to fix an identification

ψ : Kπ → Q5

that sends
1
2

√
−11+

3
2
7→ 2·5+52+3·53+4·54+4·55+3·57+58+59+O(510).
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Example, continued
I Note the Tamagawa number at 389 is trivial, i.e., c389 = 1;

n = 9 is the smallest multiple of A1 and Ac
1 such that both

points reduce to 0 in E(Fπ). Set T = 9A1.
I Note that the class number of K is h = 1. We find

dh(A1) =
1
2

√
−11 − 3

2 .
I Let f9 denote the 9th division polynomial associated to E.

We compute

dh(T) = dh(9A1)

= f9(A1)dh(A1)
92

= 24227041862247516754088925710922259344570
√
−11

− 147355399895912034115896942557395263175125

I We compute

σπ(t) : = σ5(t)

= t +
(

4 + 5 + 3 · 52 + 53 + 2 · 54 + 3 · 55 + O(56)
)

t3 + · · ·
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Example, continued

I We compute

hanti(T) =
1
5

log5

(
ψ

(
σπ(T)
σπ(Tc)

))
+

1
5 · 1

log5

(
ψ

(
dh(T)c

dh(T)

))

=
1
5

log5

 σ5

(
ψ
(
−x(T)
y(T)

))
σ5

(
ψ
(
−x(T)c

y(T)c

))
+

1
5

log5

(
ψ

(
dh(T)c

dh(T)

))
= 3 + 5 + 52 + 4 · 54 + 3 · 55 + 4 · 57 + 3 · 58 + 59 + O(510)

I From this, we obtain the anticyclotomic 5-adic height of A1:

hanti(A1) =
1
92 hanti(T)

= 3 + 3 · 5 + 3 · 52 + 2 · 54 + 4 · 55 + 4 · 56 + O(58).
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The p-adic sigma function
Note the important role played by the p-adic sigma function
in the definition of these p-adic heights. Recall σp satisfies

x(t) + c = −
d
ω

(
1
σp

dσp

ω

)
, ω =

dx
2y

.

What if we were to try to solve this (p-adic) differential
equation?

x
dx
2y

+ c
dx
2y

= −d
(

1
σp

dσp

ω

)
∫ (

x
dx
2y

+ c
dx
2y

)
= −

(
1
σp

dσp

ω

)
dx
2y

(∫ (
x

dx
2y

+ c
dx
2y

))
= −d log(σp)∫

dx
2y

(∫ (
x

dx
2y

+ c
dx
2y

))
= − log(σp)
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Nonabelian Chabauty

Our second look at p-adic heights is motivated by Kim’s
nonabelian Chabauty program:

Theorem (Kim, B.-Kedlaya-Kim, ’10.)
Let E/Q be an elliptic curve with rank 1 such that the given model is
minimal and all Tamagawa numbers are 1. Then the ratio given by
Coleman integrals ∫P

b
dx
2y

xdx
2y(∫P

b
dx
2y

)2 ,

is constant on non-torsion integral points P.
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Reinterpreted: nonabelian Chabauty, g = r = 1 at
“level 2”

The previous theorem could be thought of as giving us a
function which helps cut out integral points:
I For the elliptic curve y2 = x3 + ax + b, (with rank 1 and

squarefree discriminant), consider

log(z) :=
∫ z

b

dx
2y

, D2(z) =
∫ z

b

dx
2y

xdx
2y

.

I By writing log(z) and D2(z) as p-adic power series and
fixing one integral point P, one can consider

H(z) := D2(z) log2(P) − D2(P) log2(z).

I B-Kedlaya Kim: integral points on an elliptic curve are
contained in the set of zeros of {z : H(z) = 0}.

How do we extend this to higher genus curves?
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